| fBatchSize | TMVA::DNN::TGradientDescent< Architecture_t > | private | 
  | fConvergenceCount | TMVA::DNN::TGradientDescent< Architecture_t > | private | 
  | fConvergenceSteps | TMVA::DNN::TGradientDescent< Architecture_t > | private | 
  | fLearningRate | TMVA::DNN::TGradientDescent< Architecture_t > | private | 
  | fMinimumError | TMVA::DNN::TGradientDescent< Architecture_t > | private | 
  | fStepCount | TMVA::DNN::TGradientDescent< Architecture_t > | private | 
  | fTestError | TMVA::DNN::TGradientDescent< Architecture_t > | private | 
  | fTestInterval | TMVA::DNN::TGradientDescent< Architecture_t > | private | 
  | fTrainingError | TMVA::DNN::TGradientDescent< Architecture_t > | private | 
  | GetConvergenceCount() const | TMVA::DNN::TGradientDescent< Architecture_t > | inline | 
  | GetConvergenceSteps() const | TMVA::DNN::TGradientDescent< Architecture_t > | inline | 
  | GetTestError() const | TMVA::DNN::TGradientDescent< Architecture_t > | inline | 
  | GetTestInterval() const | TMVA::DNN::TGradientDescent< Architecture_t > | inline | 
  | GetTrainingError() const | TMVA::DNN::TGradientDescent< Architecture_t > | inline | 
  | HasConverged() | TMVA::DNN::TGradientDescent< Architecture_t > | inline | 
  | HasConverged(Scalar_t testError) | TMVA::DNN::TGradientDescent< Architecture_t > | inline | 
  | Matrix_t typedef | TMVA::DNN::TGradientDescent< Architecture_t > |  | 
  | Reset() | TMVA::DNN::TGradientDescent< Architecture_t > | inline | 
  | Scalar_t typedef | TMVA::DNN::TGradientDescent< Architecture_t > |  | 
  | SetBatchSize(Scalar_t rate) | TMVA::DNN::TGradientDescent< Architecture_t > | inline | 
  | SetConvergenceSteps(size_t steps) | TMVA::DNN::TGradientDescent< Architecture_t > | inline | 
  | SetLearningRate(Scalar_t rate) | TMVA::DNN::TGradientDescent< Architecture_t > | inline | 
  | SetTestInterval(size_t interval) | TMVA::DNN::TGradientDescent< Architecture_t > | inline | 
  | Step(Net_t &net, Matrix_t &input, const Matrix_t &output, const Matrix_t &weights) | TMVA::DNN::TGradientDescent< Architecture_t > | inline | 
  | Step(Net_t &master, std::vector< Net_t > &nets, std::vector< TBatch< Architecture_t > > &batches) | TMVA::DNN::TGradientDescent< Architecture_t > | inline | 
  | StepLoss(Net_t &net, Matrix_t &input, const Matrix_t &output, const Matrix_t &weights) | TMVA::DNN::TGradientDescent< Architecture_t > |  | 
  | StepLoss(Net_t &net, Matrix_t &input, const Matrix_t &output, const Matrix_t &weights) -> Scalar_t | TMVA::DNN::TGradientDescent< Architecture_t > | inline | 
  | StepMomentum(Net_t &master, std::vector< Net_t > &nets, std::vector< TBatch< Architecture_t > > &batches, Scalar_t momentum) | TMVA::DNN::TGradientDescent< Architecture_t > | inline | 
  | StepNesterov(Net_t &master, std::vector< Net_t > &nets, std::vector< TBatch< Architecture_t > > &batches, Scalar_t momentum) | TMVA::DNN::TGradientDescent< Architecture_t > | inline | 
  | StepReducedWeights(Net_t &net, Matrix_t &input, const Matrix_t &output) | TMVA::DNN::TGradientDescent< Architecture_t > | inline | 
  | StepReducedWeightsLoss(Net_t &net, Matrix_t &input, const Matrix_t &output, const Matrix_t &weights) | TMVA::DNN::TGradientDescent< Architecture_t > |  | 
  | StepReducedWeightsLoss(Net_t &net, Matrix_t &input, const Matrix_t &output, const Matrix_t &weights) -> Scalar_t | TMVA::DNN::TGradientDescent< Architecture_t > | inline | 
  | TGradientDescent() | TMVA::DNN::TGradientDescent< Architecture_t > |  | 
  | TGradientDescent(Scalar_t learningRate, size_t convergenceSteps, size_t testInterval) | TMVA::DNN::TGradientDescent< Architecture_t > |  | 
  | Train(const Data_t &TrainingDataIn, size_t nTrainingSamples, const Data_t &TestDataIn, size_t nTestSamples, Net_t &net, size_t nThreads=1) | TMVA::DNN::TGradientDescent< Architecture_t > |  | 
  | Train(const Data_t &trainingData, size_t nTrainingSamples, const Data_t &testData, size_t nTestSamples, Net_t &net, size_t nThreads) -> Scalar_t | TMVA::DNN::TGradientDescent< Architecture_t > |  | 
  | TrainMomentum(const Data_t &TrainingDataIn, size_t nTrainingSamples, const Data_t &TestDataIn, size_t nTestSamples, Net_t &net, Scalar_t momentum, size_t nThreads=1) | TMVA::DNN::TGradientDescent< Architecture_t > |  | 
  | TrainMomentum(const Data_t &trainingData, size_t nTrainingSamples, const Data_t &testData, size_t nTestSamples, Net_t &net, Scalar_t momentum, size_t nThreads) -> Scalar_t | TMVA::DNN::TGradientDescent< Architecture_t > |  |