16void tmva103_Application()
 
   19   RBDT<> bdt(
"myBDT", 
"http://root.cern/files/tmva101.root");
 
   22   auto y1 = bdt.Compute({1.0, 2.0, 3.0, 4.0});
 
   24   std::cout << 
"Apply model on a single input vector: " << 
y1[0] << std::endl;
 
   27   float data[8] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0};
 
   29   auto y2 = bdt.Compute(
x);
 
   31   std::cout << 
"Apply model on an input tensor: " << 
y2 << std::endl;
 
   34   ROOT::RDataFrame df(
"Events", 
"root://eospublic.cern.ch//eos/root-eos/cms_opendata_2012_nanoaod/SMHiggsToZZTo4L.root");
 
   35   auto df2 = df.Filter(
"nMuon >= 2")
 
   36                .Filter(
"nElectron >= 2")
 
   37                .Define(
"Muon_pt_1", 
"Muon_pt[0]")
 
   38                .Define(
"Muon_pt_2", 
"Muon_pt[1]")
 
   39                .Define(
"Electron_pt_1", 
"Electron_pt[0]")
 
   40                .Define(
"Electron_pt_2", 
"Electron_pt[1]")
 
   42                        Compute<4, float>(bdt),
 
   43                        {
"Muon_pt_1", 
"Muon_pt_2", 
"Electron_pt_1", 
"Electron_pt_2"});
 
   45   std::cout << 
"Mean response on the signal sample: " << *df2.Mean(
"y") << std::endl;
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char y2
Option_t Option_t TPoint TPoint const char y1
ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree ,...
Fast boosted decision tree inference.
RTensor is a container with contiguous memory and shape information.