43   const std::vector<TMatrixT<Double_t>> &linputTensor = std::get<0>(fData);
 
   45   if (fBatchDepth == 1) {
 
   46      for (
size_t i = 0; i < fBatchHeight; i++) {
 
   47         size_t sampleIndex = *sampleIterator;
 
   48         for (
size_t j = 0; j < fBatchWidth; j++) {
 
   49            tensor[0](i, j) = 
static_cast<Real_t>(linputTensor[0](sampleIndex, j));
 
   54      for (
size_t i = 0; i < fBatchDepth; i++) {
 
   55         size_t sampleIndex = *sampleIterator;
 
   56         for (
size_t j = 0; j < fBatchHeight; j++) {
 
   57            for (
size_t k = 0; k < fBatchWidth; k++) {
 
   58               tensor[i](j, k) = 
static_cast<Real_t>(linputTensor[sampleIndex](j, k));
 
   74   for (
size_t i = 0; i < fInputShape[0]; i++) {
 
   75      size_t sampleIndex = *sampleIterator;
 
   76      for (
size_t j = 0; j < 
n; j++) {
 
   77         matrix(i, j) = 
static_cast<Real_t>(loutputMatrix(sampleIndex, j));
 
   91   for (
size_t i = 0; i < fInputShape[0]; i++) {
 
   92      size_t sampleIndex = *sampleIterator;
 
   93      matrix(i, 0) = 
static_cast<Real_t>(lweightMatrix(sampleIndex, 0));
 
  103   const std::vector<TMatrixT<Double_t>> &linputTensor = std::get<0>(fData);
 
  105   if (fBatchDepth == 1) {
 
  106      for (
size_t i = 0; i < fBatchHeight; i++) {
 
  107         size_t sampleIndex = *sampleIterator;
 
  108         for (
size_t j = 0; j < fBatchWidth; j++) {
 
  109            tensor[0](i, j) = linputTensor[0](sampleIndex, j);
 
  114      for (
size_t i = 0; i < fBatchDepth; i++) {
 
  115         size_t sampleIndex = *sampleIterator;
 
  116         for (
size_t j = 0; j < fBatchHeight; j++) {
 
  117            for (
size_t k = 0; k < fBatchWidth; k++) {
 
  118               tensor[i](j, k) = linputTensor[sampleIndex](j, k);
 
  134   for (
size_t i = 0; i < fInputShape[0]; i++) {
 
  135      size_t sampleIndex = *sampleIterator;
 
  136      for (
size_t j = 0; j < 
n; j++) {
 
  137         matrix(i, j) = loutputMatrix(sampleIndex, j);
 
  151   for (
size_t i = 0; i < fInputShape[0]; i++) {
 
  152      size_t sampleIndex = *sampleIterator;
 
  153      matrix(i, 0) = lweightMatrix(sampleIndex, 0);
 
  164   Event *
event = std::get<0>(fData)[0];
 
  166   if (fBatchDepth == 1) {
 
  167      for (
size_t i = 0; i < fBatchHeight; i++) {
 
  168         size_t sampleIndex = *sampleIterator;
 
  169         for (
size_t j = 0; j < fBatchWidth; j++) {
 
  170            event = std::get<0>(fData)[sampleIndex];
 
  171            tensor[0](i, j) = 
static_cast<Real_t>(
event->GetValue(j));
 
  176      for (
size_t i = 0; i < fBatchDepth; i++) {
 
  177         size_t sampleIndex = *sampleIterator;
 
  178         for (
size_t j = 0; j < fBatchHeight; j++) {
 
  179            for (
size_t k = 0; k < fBatchWidth; k++) {
 
  180               event = std::get<0>(fData)[sampleIndex];
 
  181               tensor[i](j, k) = 
static_cast<Real_t>(
event->GetValue(j * fBatchWidth + k));
 
  197   for (
size_t i = 0; i < fInputShape[0]; i++) {
 
  198      size_t sampleIndex = *sampleIterator++;
 
  199      Event *
event = std::get<0>(fData)[sampleIndex];
 
  201      for (
Int_t j = 0; j < 
n; j++) {
 
  202         if (
event->GetNTargets() == 0) {
 
  212            matrix(i, j) = 
static_cast<Real_t>(
event->GetTarget(j));
 
  223   for (
size_t i = 0; i < fInputShape[0]; i++) {
 
  224      size_t sampleIndex = *sampleIterator++;
 
  225      Event *
event = std::get<0>(fData)[sampleIndex];
 
  226      matrix(i, 0) = 
static_cast<Real_t>(
event->GetWeight());
 
  236   Event *
event = std::get<0>(fData)[0];
 
  238   if (fBatchDepth == 1) {
 
  239      for (
size_t i = 0; i < fBatchHeight; i++) {
 
  240         size_t sampleIndex = *sampleIterator;
 
  241         for (
size_t j = 0; j < fBatchWidth; j++) {
 
  242            event = std::get<0>(fData)[sampleIndex];
 
  243            tensor[0](i, j) = 
event->GetValue(j);
 
  248      for (
size_t i = 0; i < fBatchDepth; i++) {
 
  249         size_t sampleIndex = *sampleIterator;
 
  250         for (
size_t j = 0; j < fBatchHeight; j++) {
 
  251            for (
size_t k = 0; k < fBatchWidth; k++) {
 
  252               event = std::get<0>(fData)[sampleIndex];
 
  253               tensor[i](j, k) = 
event->GetValue(j * fBatchWidth + k);
 
  269   for (
size_t i = 0; i < fInputShape[0]; i++) {     
 
  270      size_t sampleIndex = *sampleIterator++;
 
  271      Event *
event = std::get<0>(fData)[sampleIndex];
 
  273      for (
Int_t j = 0; j < 
n; j++) {
 
  274         if (
event->GetNTargets() == 0) {
 
  284            matrix(i, j) = 
event->GetTarget(j);
 
  295   for (
size_t i = 0; i < fInputShape[0]; i++) {
 
  296      size_t sampleIndex = *sampleIterator++;
 
  297      Event *
event = std::get<0>(fData)[sampleIndex];
 
  298      matrix(i, 0) = 
event->GetWeight();
 
Class that contains all the data information.
Bool_t IsSignal(const Event *ev) const
typename std::vector< size_t >::iterator IndexIterator_t
create variable transformations