18from ROOT 
import TMVA, TFile, TString, gROOT
 
   19from array 
import array
 
   20from subprocess 
import call
 
   37    branches[branchName] = array(
'f', [-999])
 
   39    if branchName != 
'fvalue':
 
   48def predict(model, test_X, batch_size=32):
 
   65load_model_custom_objects = {
"optimizer": 
None, 
"criterion": 
None, 
"train_func": 
None, 
"predict_func": predict}
 
   69print(
'Some example regressions:')
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
The Reader class serves to use the MVAs in a specific analysis context.