106         0.454937, 1.38629, 2.36597, 3.35670, 4.35146, 5.34812, 6.34581, 7.34412, 8.34283,
 
  107         9.34182, 10.34, 11.34, 12.34, 13.34, 14.34, 15.34, 16.34, 17.34, 18.34, 19.34,
 
  108        20.34, 21.34, 22.34, 23.34, 24.34, 25.34, 26.34, 27.34, 28.34, 29.34, 30.34,
 
  109        31.34, 32.34, 33.34, 34.34, 35.34, 36.34, 37.34, 38.34, 39.34, 40.34,
 
  110        41.34, 42.34, 43.34, 44.34, 45.34, 46.34, 47.34, 48.34, 49.33};
 
 
  113         5.02389, 7.3776,9.34840,11.1433,12.8325,
 
  114        14.4494,16.0128,17.5346,19.0228,20.4831,21.920,23.337,
 
  115        24.736,26.119,27.488,28.845,30.191,31.526,32.852,34.170,
 
  116        35.479,36.781,38.076,39.364,40.646,41.923,43.194,44.461,
 
  117        45.722,46.979,48.232,49.481,50.725,51.966,53.203,54.437,
 
  118        55.668,56.896,58.120,59.342,60.561,61.777,62.990,64.201,
 
  119        65.410,66.617,67.821,69.022,70.222,71.420};
 
 
  143      Error(
"TRobustEstimator",
"Not enough vectors or variables");
 
  147      Error(
"TRobustEstimator",
"For the univariate case, use the default constructor and EvaluateUni() function");
 
  155         Warning(
"TRobustEstimator",
"chosen h is too small, default h is taken instead");
 
 
  214      Warning(
"Evaluate",
"Chosen h = #observations, so classic estimates of location and scatter will be calculated");
 
  231   for (i=0; i<
nbest; i++)
 
  245      for (k=0; k<
k1; k++) {
 
  249         for (i=0; i<
fH; i++) {
 
  294      for (i=0; i<
nbest; i++) {
 
  332         for (i=0; i<
fN; i++) {
 
  400      for(i=0; i<
ntemp; i++) {
 
  407      for (i=0; i<
nbest; i++)
 
  410      for(k=0; k<
k2; k++) {
 
  413         for (i=0; i<
htemp; i++) {
 
  466                     for(i=0; i<
fNvar; i++) {
 
  485      for(i=0; i<
nbest; i++) {
 
  497   for(i=0; i<
sum; i++) {
 
  513         for(i=0; i<
fNvar; i++)
 
  549      for(i=0; i<
fNvar; i++) {
 
  560   for(i=0; i<
fNvar; i++) {
 
  587   for (i=0; i<
fN; i++) {
 
 
  613   Double_t faclts[]={2.6477,2.5092,2.3826,2.2662,2.1587,2.0589,1.9660,1.879,1.7973,1.7203,1.6473};
 
 
  697      Warning(
"GetCovariance",
"provided matrix is of the wrong size, it will be resized");
 
 
  709      Warning(
"GetCorrelation",
"provided matrix is of the wrong size, it will be resized");
 
 
  721      Error(
"GetHyperplane",
"the data doesn't lie on a hyperplane!\n");
 
 
  734      Error(
"GetHyperplane",
"the data doesn't lie on a hyperplane!\n");
 
  738      Warning(
"GetHyperPlane",
"provided vector is of the wrong size, it will be resized");
 
 
  750      Warning(
"GetMean",
"provided vector is of the wrong size, it will be resized");
 
 
  761   if (
rdist.GetNoElements()!=
fN) {
 
  762      Warning(
"GetRDistances",
"provided vector is of the wrong size, it will be resized");
 
 
  786   for (i=1; i<
fNvar+1; i++) {
 
 
  831   for (i=0; i<
fNvar; i++) {
 
  839   for (i=0; i<
fNvar; i++) {
 
 
  856   for(i=0; i<
fNvar; i++) {
 
 
  888   for (i=0; i<
p+1; i++) {
 
  891         for(
j=0; 
j<=i-1; 
j++) {
 
  909   for (i=0; i<
p+1; i++) {
 
  952         for(i=0; i<
fNvar; i++)
 
  955         for(i=0; i<
fNvar; i++)
 
 
 1012      for(i=0; i<
fNvar; i++)
 
 1015      for(i=0; i<
fNvar; i++)
 
 1023   for (i=0; i<
htotal; i++) {
 
 
 1048   for (i=0; i<
fN; i++) {
 
 1057   for (i=0; i<
fN; i++) {
 
 
 1084      for (i=0; i<
fN; i++) {
 
 1101      for(i=0; i<
fNvar; i++) {
 
 
 1156            for(
Int_t i=0; i<5; i++)
 
 
 1182   for (i=0; i<
fN; i++) {
 
 1202   for (i=0; i<
fN; i++) {
 
 1217   for(i=0; i<
fN; i++) {
 
 
 1240   for (k=1; k<=
ngroup; k++) {
 
 1249            for (i=1; i<=
jndex-1; i++) {
 
 
 1269   const Int_t kWorkMax=100;
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
#define R__ASSERT(e)
Checks condition e and reports a fatal error if it's false.
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
R__EXTERN TRandom * gRandom
const Double_t kChiMedian[50]
const Double_t kChiQuant[50]
void Set(Int_t n) override
Set size of this array to n ints.
Cholesky Decomposition class.
TMatrixTBase< Element > & ResizeTo(Int_t nrows, Int_t ncols, Int_t=-1) override
Set size of the matrix to nrows x ncols New dynamic elements are created, the overlapping part of the...
Double_t Determinant() const override
TMatrixTBase< Element > & ResizeTo(Int_t nrows, Int_t ncols, Int_t=-1) override
Set size of the matrix to nrows x ncols New dynamic elements are created, the overlapping part of the...
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
virtual Double_t Uniform(Double_t x1=1)
Returns a uniform deviate on the interval (0, x1).
Int_t RDist(TMatrixD &sscp)
Calculates robust distances.Then the samples with robust distances greater than a cutoff value (0....
Double_t CStep(Int_t ntotal, Int_t htotal, Int_t *index, TMatrixD &data, TMatrixD &sscp, Double_t *ndist)
from the input htotal-subset constructs another htotal subset with lower determinant
const TMatrixDSym * GetCovariance() const
TMatrixDSym fInvcovariance
void CreateSubset(Int_t ntotal, Int_t htotal, Int_t p, Int_t *index, TMatrixD &data, TMatrixD &sscp, Double_t *ndist)
creates a subset of htotal elements from ntotal elements first, p+1 elements are drawn randomly(witho...
void Covar(TMatrixD &sscp, TVectorD &m, TMatrixDSym &cov, TVectorD &sd, Int_t nvec)
calculates mean and covariance
Int_t Exact(Double_t *ndist)
for the exact fit situations returns number of observations on the hyperplane
Double_t KOrdStat(Int_t ntotal, Double_t *arr, Int_t k, Int_t *work)
because I need an Int_t work array
Int_t GetNOut()
returns the number of outliers
TRobustEstimator()
this constructor should be used in a univariate case: first call this constructor,...
void Correl()
transforms covariance matrix into correlation matrix
void AddColumn(Double_t *col)
adds a column to the data matrix it is assumed that the column has size fN variable fVarTemp keeps th...
void RDraw(Int_t *subdat, Int_t ngroup, Int_t *indsubdat)
Draws ngroup nonoverlapping subdatasets out of a dataset of size n such that the selected case number...
void Classic()
called when h=n.
void Evaluate()
Finds the estimate of multivariate mean and variance.
const TVectorD * GetMean() const
Int_t Exact2(TMatrixD &mstockbig, TMatrixD &cstockbig, TMatrixD &hyperplane, Double_t *deti, Int_t nbest, Int_t kgroup, TMatrixD &sscp, Double_t *ndist)
This function is called if determinant of the covariance matrix of a subset=0.
const TVectorD * GetRDistances() const
Int_t GetBDPoint()
returns the breakdown point of the algorithm
void CreateOrtSubset(TMatrixD &dat, Int_t *index, Int_t hmerged, Int_t nmerged, TMatrixD &sscp, Double_t *ndist)
creates a subset of hmerged vectors with smallest orthogonal distances to the hyperplane hyp[1]*(x1-m...
void AddRow(Double_t *row)
adds a vector to the data matrix it is supposed that the vector is of size fNvar
const TVectorD * GetHyperplane() const
if the points are on a hyperplane, returns this hyperplane
Int_t Partition(Int_t nmini, Int_t *indsubdat)
divides the elements into approximately equal subgroups number of elements in each subgroup is stored...
const TMatrixDSym * GetCorrelation() const
Double_t GetChiQuant(Int_t i) const
returns the chi2 quantiles
void EvaluateUni(Int_t nvectors, Double_t *data, Double_t &mean, Double_t &sigma, Int_t hh=0)
for the univariate case estimates of location and scatter are returned in mean and sigma parameters t...
void AddToSscp(TMatrixD &sscp, TVectorD &vec)
update the sscp matrix with vector vec
void ClearSscp(TMatrixD &sscp)
clear the sscp matrix, used for covariance and mean calculation
TVectorT< Element > & ResizeTo(Int_t lwb, Int_t upb)
Resize the vector to [lwb:upb] .
Element * GetMatrixArray()
Long64_t LocMin(Long64_t n, const T *a)
Returns index of array with the minimum element.
Double_t Median(Long64_t n, const T *a, const Double_t *w=nullptr, Long64_t *work=nullptr)
Same as RMS.
Long64_t LocMax(Long64_t n, const T *a)
Returns index of array with the maximum element.
Double_t Sqrt(Double_t x)
Returns the square root of x.
Short_t Min(Short_t a, Short_t b)
Returns the smallest of a and b.
void Sort(Index n, const Element *a, Index *index, Bool_t down=kTRUE)
Sort the n elements of the array a of generic templated type Element.
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.
static uint64_t sum(uint64_t i)