220 for(
Int_t i=0;i<2;i++) {
359 Fatal(
"Unfold",
"epsilon#Eepsilon has dimension %d != 1",
471 "epsilon#fDXDtauSquared has dimension %d != 1",
520 Warning(
"DoUnfold",
"rank of output covariance is %d expect %d",
606 if(
a->GetNcols()!=
b->GetNrows()) {
607 Fatal(
"MultiplyMSparseMSparse",
608 "inconsistent matrix col/ matrix row %d !=%d",
609 a->GetNcols(),
b->GetNrows());
680 if(
a->GetNrows() !=
b->GetNrows()) {
681 Fatal(
"MultiplyMSparseTranspMSparse",
682 "inconsistent matrix row numbers %d!=%d",
683 a->GetNrows(),
b->GetNrows());
697 typedef std::map<Int_t, MMatrixRow_t >
MMatrix_t;
720 n += (*irow).second.size();
763 if(
a->GetNcols()!=
b->GetNrows()) {
764 Fatal(
"MultiplyMSparseM",
"inconsistent matrix col /matrix row %d!=%d",
765 a->GetNcols(),
b->GetNrows());
824 (
v && ((m1->
GetNcols()!=
v->GetNrows())||(
v->GetNcols()!=1)))) {
826 Fatal(
"MultiplyMSparseMSparseTranspVector",
827 "matrix cols/vector rows %d!=%d!=%d or vector rows %d!=1\n",
830 Fatal(
"MultiplyMSparseMSparseTranspVector",
925 if((
dest->GetNrows()!=
src->GetNrows())||
926 (
dest->GetNcols()!=
src->GetNcols())) {
927 Fatal(
"AddMSparse",
"inconsistent matrix rows %d!=%d OR cols %d!=%d",
928 src->GetNrows(),
dest->GetNrows(),
src->GetNcols(),
dest->GetNcols());
935 for(
Int_t row=0;row<
dest->GetNrows();row++) {
956 Fatal(
"AddMSparse",
"Nan detected %d %d %d",
997 Fatal(
"InvertMSparseSymmPos",
"inconsistent matrix row/col %d!=%d",
1023 Fatal(
"InvertMSparseSymmPos",
1024 "Matrix has %d negative elements on the diagonal",
nError);
1081#ifdef CONDITION_BLOCK_PART
1084 for(
int i=
inc;i<nn;i++) {
1101 std::cout<<
" "<<i<<
" "<<swap[i]<<
" "<<
swapBack[i]<<
"\n";
1103 std::cout<<
"after sorting\n";
1105 if(i==
iDiagonal) std::cout<<
"iDiagonal="<<i<<
"\n";
1106 if(i==
iBlock) std::cout<<
"iBlock="<<i<<
"\n";
1107 std::cout<<
" "<<swap[i]<<
" "<<
aII(swap[i])<<
"\n";
1131 Fatal(
"InvertMSparseSymmPos",
"sparse matrix analysis failed %d %d %d %d %d",
1137 Info(
"InvertMSparseSymmPos",
"iDiagonal=%d iBlock=%d nRow=%d",
1208 Fatal(
"InvertMSparseSymmPos",
1209 "diagonal part 1 has rank %d != %d, matrix can not be inverted",
1237 Fatal(
"InvertMSparseSymmPos",
1238 "diagonal part 2 has rank %d != %d, matrix can not be inverted",
1291#ifndef FORCE_EIGENVALUE_DECOMPOSITION
1350 for(
Int_t k=0;k<i;k++) {
1365 std::cout<<
"dmin,dmax: "<<
dmin<<
" "<<
dmax<<
"\n";
1374 cinv(i,i)=1./
c(i,i);
1379 for(
Int_t k=i+1;k<
j;k++) {
1472 for(
Int_t iF=0;iF<
Finv->GetNrows();iF++) {
1487 Fatal(
"InvertMSparseSymmPos",
1488 "non-trivial part has rank < %d, matrix can not be inverted",
1495 Info(
"InvertMSparseSymmPos",
1496 "cholesky-decomposition failed, try eigenvalue analysis");
1498 std::cout<<
"nEV="<<
nEV<<
" iDiagonal="<<
iDiagonal<<
"\n";
1509 if((i<0)||(
j<0)||(i>=
nEV)||(
j>=
nEV)) {
1510 std::cout<<
" error "<<
nEV<<
" "<<i<<
" "<<
j<<
"\n";
1514 Fatal(
"InvertMSparseSymmPos",
1515 "non-finite number detected element %d %d\n",
1525 std::cout<<
"Eigenvalues\n";
1530 if(
Eigen.GetEigenValues()(0)<0.0) {
1532 }
else if(
Eigen.GetEigenValues()(0)>0.0) {
1540 Error(
"InvertMSparseSymmPos",
1541 "Largest Eigenvalue is negative %f",
1542 Eigen.GetEigenValues()(0));
1544 Error(
"InvertMSparseSymmPos",
1545 "Some Eigenvalues are negative (EV%d/EV0=%g epsilon=%g)",
1624 for(
Int_t i=
nullptr;i<
a.GetNrows();i++) {
1625 for(
Int_t j=
nullptr;
j<
a.GetNcols();
j++) {
1629 std::cout<<
"Ar is not symmetric Ar("<<i<<
","<<
j<<
")="<<
ar(i,
j)
1630 <<
" Ar("<<
j<<
","<<i<<
")="<<
ar(
j,i)<<
"\n";
1635 std::cout<<
"ArA is not equal A ArA("<<i<<
","<<
j<<
")="<<
ara(i,
j)
1636 <<
" A("<<i<<
","<<
j<<
")="<<
a(i,
j)<<
"\n";
1641 std::cout<<
"rAr is not equal r rAr("<<i<<
","<<
j<<
")="<<
rar(i,
j)
1642 <<
" r("<<i<<
","<<
j<<
")="<<
R(i,
j)<<
"\n";
1648 std::cout<<
"Matrix is not positive\n";
1738 for (
Int_t ix = 0; ix <
nx0; ix++) {
1743 for (
Int_t iy = 0; iy <
ny; iy++) {
1746 z =
hist_A->GetBinContent(ix, iy + 1);
1748 z =
hist_A->GetBinContent(iy + 1, ix);
1767 hist_A->GetBinContent(ix, 0) +
1771 hist_A->GetBinContent(0, ix) +
1782 for (
Int_t ix = 0; ix <
nx; ix++) {
1796 for (
Int_t ix = 0; ix <
nx0; ix++) {
1821 Info(
"TUnfold",
"underflow and overflow bin "
1822 "do not depend on the input data");
1824 Warning(
"TUnfold",
"%d output bins "
1826 static_cast<const char *
>(
binlist));
1837 for (
Int_t iy = 0; iy <
ny; iy++) {
1838 for (
Int_t ix = 0; ix <
nx; ix++) {
1855 Info(
"TUnfold",
"%d input bins and %d output bins (includes 2 underflow/overflow bins)",
ny,
nx);
1857 Info(
"TUnfold",
"%d input bins and %d output bins (includes 1 underflow bin)",
ny,
nx);
1859 Info(
"TUnfold",
"%d input bins and %d output bins (includes 1 overflow bin)",
ny,
nx);
1861 Info(
"TUnfold",
"%d input bins and %d output bins",
ny,
nx);
1865 Error(
"TUnfold",
"too few (ny=%d) input bins for nx=%d output bins",
ny,
nx);
1867 Warning(
"TUnfold",
"too few (ny=%d) input bins for nx=%d output bins",
ny,
nx);
1879 "%d regularisation conditions have been skipped",
nError);
1882 "One regularisation condition has been skipped");
2166 Error(
"RegularizeBins",
"regmode = %d is not valid",
regmode);
2345 if(
hist_vyy->GetBinContent(iy+1,
jy+1)!=0.0) {
2353 if(iy==
jy)
continue;
2366 "inverse of input covariance is taken from user input");
2388 "input covariance has elements C(X,Y)!=nullptr where V(X)==0");
2412 (*fY) (i, 0) =
input->GetBinContent(i + 1);
2419 for (
Int_t i = 0; i <
mAtV->GetNrows();i++) {
2420 if(
mAtV->GetRowIndexArray()[i]==
2421 mAtV->GetRowIndexArray()[i+1]) {
2428 Warning(
"SetInput",
"%d/%d input bins have zero error,"
2429 " 1/error set to %lf.",
2432 Warning(
"SetInput",
"One input bin has zero error,"
2438 Warning(
"SetInput",
"%d/%d input bins have zero error,"
2441 Warning(
"SetInput",
"One input bin has zero error,"
2442 " and is ignored.");
2451 for (
Int_t col = 0; col <
mAtV->GetNrows();col++) {
2452 if(
mAtV->GetRowIndexArray()[col]==
2453 mAtV->GetRowIndexArray()[col+1]) {
2470 Error(
"SetInput",
"%d/%d output bins are not constrained by any data.",
2473 Error(
"SetInput",
"One output bin [%d] is not constrained by any data.",
2523 for(
int i=0;i<
r.GetNrows();i++) {
2563 typedef std::map<Double_t,std::pair<Double_t,Double_t> >
XYtau_t;
2598 Error(
"ScanLcurve",
"too few input bins, NDF<=nullptr %d",
GetNdf());
2603 Info(
"ScanLcurve",
"logtau=-Infinity X=%lf Y=%lf",x0,
y0);
2605 Fatal(
"ScanLcurve",
"problem (too few input bins?) X=%f",x0);
2608 Fatal(
"ScanLcurve",
"problem (missing regularisation?) Y=%f",
y0);
2618 Fatal(
"ScanLcurve",
"problem (missing regularisation?) X=%f Y=%f",
2622 Info(
"ScanLcurve",
"logtau=%lf X=%lf Y=%lf",
2637 Fatal(
"ScanLcurve",
"problem (missing regularisation?) X=%f Y=%f",
2641 Info(
"ScanLcurve",
"logtau=%lf X=%lf Y=%lf",
2653 (((*
curve.
begin()).second.first-x0>0.00432)||
2655 (
curve.size()<2))) {
2659 Fatal(
"ScanLcurve",
"problem (missing regularisation?) X=%f Y=%f",
2663 Info(
"ScanLcurve",
"logtau=%lf X=%lf Y=%lf",
2674 Fatal(
"ScanLcurve",
"problem (missing regularisation?) X=%f Y=%f",
2677 Info(
"ScanLcurve",
"logtau=%lf X=%lf Y=%lf",
2684 Fatal(
"ScanLcurve",
"problem (missing regularisation?) X=%f Y=%f",
2687 Info(
"ScanLcurve",
"logtau=%lf X=%lf Y=%lf",
2706 const std::pair<Double_t,Double_t> &
xy0=(*i0).second;
2707 const std::pair<Double_t,Double_t> &
xy1=(*i1).second;
2713 logTau=0.5*((*i0).first+(*i1).first);
2719 Fatal(
"ScanLcurve",
"problem (missing regularisation?) X=%f Y=%f",
2746 lXi[
n]=(*i).second.first;
2747 lYi[
n]=(*i).second.second;
2755 for(
Int_t i=0;i<
n-1;i++) {
2853 Fatal(
"ScanLcurve",
"problem (missing regularisation?) X=%f Y=%f",
2856 Info(
"ScanLcurve",
"Result logtau=%lf X=%lf Y=%lf",
2867 if(!
curve.empty()) {
2876 x[
n]=(*i).second.first;
2877 y[
n]=(*i).second.second;
2883 (*lCurve)->SetTitle(
"L curve");
2943 out->GetBinContent(
dest));
2977 if(
destI<0)
continue;
2979 out->SetBinContent(
destI, (*
fAx) (i, 0)+ out->GetBinContent(
destI));
3079 if(
destI<0)
continue;
3081 out->SetBinContent(
destI, (*
fY) (i, 0)+out->GetBinContent(
destI));
3089 out->SetBinError(
destI,
e);
3109 Warning(
"GetInputInverseEmatrix",
"input covariance matrix has rank %d expect %d",
3113 Error(
"GetInputInverseEmatrix",
"number of parameters %d > %d (rank of input covariance). Problem can not be solved",
GetNpar(),
rank);
3114 }
else if(
fNdf==0) {
3115 Warning(
"GetInputInverseEmatrix",
"number of parameters %d = input rank %d. Problem is ill posed",
GetNpar(),
rank);
3124 for(
int i=0;i<=out->GetNbinsX()+1;i++) {
3125 for(
int j=0;
j<=out->GetNbinsY()+1;
j++) {
3126 out->SetBinContent(i,
j,0.);
3309 std::map<Int_t,Double_t>
e2;
3358 for(std::map<Int_t,Double_t>::const_iterator i=
e2.
begin();
3471 if((
e[i]>0.0)&&(
e[
j]>0.0)) {
3474 rhoij->SetBinContent(i,
j,0.0);
3613 if(
destI<0)
continue;
3623 if(
destJ<0)
continue;
3633 Warning(
"GetRhoIFormMatrix",
"Covariance matrix has rank %d expect %d",
3683 nxyz[0]=
h->GetNbinsX()+1;
3684 nxyz[1]=
h->GetNbinsY()+1;
3685 nxyz[2]=
h->GetNbinsZ()+1;
3686 for(
int i=
h->GetDimension();i<3;i++)
nxyz[i]=0;
3688 for(
int i=0;i<3;i++)
ixyz[i]=0;
3693 h->SetBinContent(
ibin,
x);
3694 h->SetBinError(
ibin,0.0);
3695 for(
Int_t i=0;i<3;i++) {
3792 std::map<double,ScanResult > scan;
3797 while((
int)scan.size()<
nPoint) {
3812 tau=1./
ev(
ev.GetNrows()-1);
3817 std::vector<double> t,s;
3820 for(std::map<double,ScanResult>::const_iterator i=scan.begin();
3821 i!=scan.end();i++) {
3822 t.push_back((*i).first);
3823 s.push_back((*i).second.SURE);
3832 double s0=0.,
s1=0.,
s2=0.;
3834 for(
size_t i=0;i<t.size()-1;i++) {
3864 for(
size_t i=2;i<t.size()-1;i++) {
3872 Info(
"ScanSURE",
"minimum near: [%f,%f,%f] -> [%f,%f,%f}",
3904 if((tau<=0.)&&(
GetNdf()<=0)) {
3905 Error(
"ScanSURE",
"too few input bins, NDF<=nullptr %d",
GetNdf());
3908 Info(
"ScanSURE",
"logtau=-Infinity Chi2A=%lf SURE=%lf DF=%lf X=%lf Y=%lf",
3909 r.chi2A,
r.SURE,
r.DF,
r.x,
r.y);
3911 Fatal(
"ScanSURE",
"problem (too few input bins?) x=%f",
r.x);
3914 Fatal(
"ScanSURE",
"problem (missing regularisation?) y=%f",
r.y);
3917 Info(
"ScanSURE",
"logtau=%lf Chi2A=%lf SURE=%lf DF=%lf X=%lf Y=%lf",
3926 for(std::map<double,ScanResult>::const_iterator i=scan.begin();
3927 i!=scan.end();i++) {
3930 if((*i).first>0.0) {
3935 double s=(*i).second.SURE;
3941 DF.push_back((*i).second.DF);
3942 chi2A.push_back((*i).second.chi2A);
3943 X.push_back((*i).second.x);
3944 Y.push_back((*i).second.y);
#define R(a, b, c, d, e, f, g, h, i)
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t dest
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
Option_t Option_t TPoint xy
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t src
TMatrixTSparse< Double_t > TMatrixDSparse
TMatrixT< Double_t > TMatrixD
const_iterator begin() const
const_iterator end() const
void Set(Int_t n) override
Set size of this array to n doubles.
const Double_t * GetArray() const
void Set(Int_t n) override
Set size of this array to n ints.
A TGraph is an object made of two arrays X and Y with npoints each.
TH1 is the base class of all histogram classes in ROOT.
Service class for 2-D histogram classes.
void SetBinContent(Int_t bin, Double_t content) override
Set bin content.
TMatrixTBase< Element > & SetMatrixArray(const Element *data, Option_t *="") override
Copy array data to matrix .
const Int_t * GetRowIndexArray() const override
const Int_t * GetColIndexArray() const override
const Element * GetMatrixArray() const override
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
virtual void Fatal(const char *method, const char *msgfmt,...) const
Issue fatal error message.
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
Class to create third splines to interpolate knots Arbitrary conditions can be introduced for first a...
Base class for spline implementation containing the Draw/Paint methods.
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
An algorithm to unfold distributions from detector to truth level.
TArrayI fHistToX
mapping of histogram bins to matrix indices
double GetDF(void) const
return the effecive number of degrees of freedom See e.g.
TMatrixDSparse * fE
matrix E
TMatrixDSparse * fEinv
matrix E^(-1)
virtual Double_t GetLcurveY(void) const
get value on y-axis of L-curve determined in recent unfolding
TMatrixDSparse * fAx
result x folded back A*x
TMatrixDSparse * MultiplyMSparseM(const TMatrixDSparse *a, const TMatrixD *b) const
multiply sparse matrix and a non-sparse matrix
virtual Double_t DoUnfold(void)
core unfolding algorithm
Double_t fChi2A
chi**2 contribution from (y-Ax)Vyy-1(y-Ax)
TMatrixD * fX0
bias vector x0
double GetSURE(void) const
return Stein's unbiased risk estimator See e.g.
void GetBias(TH1 *bias, const Int_t *binMap=nullptr) const
get bias vector including bias scale
TMatrixDSparse * MultiplyMSparseTranspMSparse(const TMatrixDSparse *a, const TMatrixDSparse *b) const
multiply a transposed Sparse matrix with another Sparse matrix
TMatrixDSparse * MultiplyMSparseMSparseTranspVector(const TMatrixDSparse *m1, const TMatrixDSparse *m2, const TMatrixTBase< Double_t > *v) const
calculate a sparse matrix product M1*V*M2T where the diagonal matrix V is given by a vector
TMatrixDSparse * CreateSparseMatrix(Int_t nrow, Int_t ncol, Int_t nele, Int_t *row, Int_t *col, Double_t *data) const
create a sparse matrix, given the nonzero elements
Int_t RegularizeSize(int bin, Double_t scale=1.0)
add a regularisation condition on the magnitude of a truth bin
Double_t fEpsMatrix
machine accuracy used to determine matrix rank after eigenvalue analysis
void GetProbabilityMatrix(TH2 *A, EHistMap histmap) const
get matrix of probabilities
Double_t GetChi2L(void) const
get χ2L contribution determined in recent unfolding
TMatrixDSparse * fVxx
covariance matrix Vxx
Int_t GetNy(void) const
returns the number of measurement bins
virtual TString GetOutputBinName(Int_t iBinX) const
Get bin name of an outpt bin.
Double_t fBiasScale
scale factor for the bias
virtual Int_t ScanSURE(Int_t nPoint, Double_t tauMin, Double_t tauMax, TGraph **logTauSURE=nullptr, TGraph **df_chi2A=nullptr, TGraph **lCurve=nullptr)
minimize Stein's unbiased risk estimator "SURE" using successive calls to DoUnfold at various tau.
virtual Int_t ScanLcurve(Int_t nPoint, Double_t tauMin, Double_t tauMax, TGraph **lCurve, TSpline **logTauX=nullptr, TSpline **logTauY=nullptr, TSpline **logTauCurvature=nullptr)
scan the L curve, determine tau and unfold at the final value of tau
Double_t fRhoAvg
average global correlation coefficient
TMatrixDSparse * fDXDtauSquared
derivative of the result wrt tau squared
static void DeleteMatrix(TMatrixD **m)
delete matrix and invalidate pointer
void ClearHistogram(TH1 *h, Double_t x=0.) const
Initialize bin contents and bin errors for a given histogram.
Int_t RegularizeDerivative(int left_bin, int right_bin, Double_t scale=1.0)
add a regularisation condition on the difference of two truth bin
Int_t GetNx(void) const
returns internal number of output (truth) matrix rows
static const char * GetTUnfoldVersion(void)
return a string describing the TUnfold version
void SetConstraint(EConstraint constraint)
set type of area constraint
void GetFoldedOutput(TH1 *folded, const Int_t *binMap=nullptr) const
get unfolding result on detector level
Int_t RegularizeBins(int start, int step, int nbin, ERegMode regmode)
add regularisation conditions for a group of bins
Bool_t AddRegularisationCondition(Int_t i0, Double_t f0, Int_t i1=-1, Double_t f1=0., Int_t i2=-1, Double_t f2=0.)
add a row of regularisation conditions to the matrix L
Int_t RegularizeCurvature(int left_bin, int center_bin, int right_bin, Double_t scale_left=1.0, Double_t scale_right=1.0)
add a regularisation condition on the curvature of three truth bin
void SetBias(const TH1 *bias)
set bias vector
void GetL(TH2 *l) const
get matrix of regularisation conditions
ERegMode fRegMode
type of regularisation
Int_t GetNr(void) const
get number of regularisation conditions
TMatrixDSparse * fVxxInv
inverse of covariance matrix Vxx-1
TMatrixD * fX
unfolding result x
EConstraint
type of extra constraint
@ kEConstraintNone
use no extra constraint
virtual Double_t GetLcurveX(void) const
get value on x-axis of L-curve determined in recent unfolding
Double_t GetRhoI(TH1 *rhoi, const Int_t *binMap=nullptr, TH2 *invEmat=nullptr) const
get global correlation coefficiencts, possibly cumulated over several bins
TMatrixDSparse * fVyy
covariance matrix Vyy corresponding to y
Int_t fNdf
number of degrees of freedom
TArrayD fSumOverY
truth vector calculated from the non-normalized response matrix
ERegMode
choice of regularisation scheme
@ kRegModeNone
no regularisation, or defined later by RegularizeXXX() methods
@ kRegModeDerivative
regularize the 1st derivative of the output distribution
@ kRegModeSize
regularise the amplitude of the output distribution
@ kRegModeCurvature
regularize the 2nd derivative of the output distribution
@ kRegModeMixed
mixed regularisation pattern
void GetInput(TH1 *inputData, const Int_t *binMap=nullptr) const
Input vector of measurements.
void SetEpsMatrix(Double_t eps)
set numerical accuracy for Eigenvalue analysis when inverting matrices with rank problems
const TMatrixDSparse * GetE(void) const
matrix E, using internal bin counting
TVectorD GetSqrtEvEmatrix(void) const
void GetOutput(TH1 *output, const Int_t *binMap=nullptr) const
get output distribution, possibly cumulated over several bins
void GetRhoIJ(TH2 *rhoij, const Int_t *binMap=nullptr) const
get correlation coefficiencts, possibly cumulated over several bins
void ErrorMatrixToHist(TH2 *ematrix, const TMatrixDSparse *emat, const Int_t *binMap, Bool_t doClear) const
add up an error matrix, also respecting the bin mapping
TArrayI fXToHist
mapping of matrix indices to histogram bins
TMatrixDSparse * fDXDY
derivative of the result wrt dx/dy
TMatrixD * fY
input (measured) data y
TMatrixDSparse * InvertMSparseSymmPos(const TMatrixDSparse *A, Int_t *rank) const
get the inverse or pseudo-inverse of a positive, sparse matrix
TMatrixDSparse * fVyyInv
inverse of the input covariance matrix Vyy-1
Double_t fLXsquared
chi**2 contribution from (x-s*x0)TLTL(x-s*x0)
TMatrixDSparse * fDXDAM[2]
matrix contribution to the of derivative dx_k/dA_ij
Double_t fTauSquared
regularisation parameter tau squared
Int_t GetNpar(void) const
get number of truth parameters determined in recent unfolding
virtual void ClearResults(void)
reset all results
Double_t fRhoMax
maximum global correlation coefficient
void GetEmatrix(TH2 *ematrix, const Int_t *binMap=nullptr) const
get output covariance matrix, possibly cumulated over several bins
TMatrixDSparse * MultiplyMSparseMSparse(const TMatrixDSparse *a, const TMatrixDSparse *b) const
multiply two sparse matrices
EConstraint fConstraint
type of constraint to use for the unfolding
TUnfold(void)
only for use by root streamer or derived classes
EHistMap
arrangement of axes for the response matrix (TH2 histogram)
@ kHistMapOutputHoriz
truth level on x-axis of the response matrix
void AddMSparse(TMatrixDSparse *dest, Double_t f, const TMatrixDSparse *src) const
add a sparse matrix, scaled by a factor, to another scaled matrix
void GetNormalisationVector(TH1 *s, const Int_t *binMap=nullptr) const
histogram of truth bins, determined from suming over the response matrix
TMatrixDSparse * fDXDAZ[2]
vector contribution to the of derivative dx_k/dA_ij
Double_t GetRhoIFromMatrix(TH1 *rhoi, const TMatrixDSparse *eOrig, const Int_t *binMap, TH2 *invEmat) const
void InitTUnfold(void)
initialize data menbers, for use in constructors
Double_t GetTau(void) const
return regularisation parameter
Double_t GetChi2A(void) const
get χ2A contribution determined in recent unfolding
Int_t RegularizeBins2D(int start_bin, int step1, int nbin1, int step2, int nbin2, ERegMode regmode)
add regularisation conditions for 2d unfolding
const TMatrixDSparse * GetDXDY(void) const
matrix of derivatives dx/dy
void GetLsquared(TH2 *lsquared) const
get matrix of regularisation conditions squared
void GetInputInverseEmatrix(TH2 *ematrix)
get inverse of the measurement's covariance matrix
TMatrixDSparse * fA
response matrix A
TMatrixDSparse * fL
regularisation conditions L
virtual Int_t SetInput(const TH1 *hist_y, Double_t scaleBias=0.0, Double_t oneOverZeroError=0.0, const TH2 *hist_vyy=nullptr, const TH2 *hist_vyy_inv=nullptr)
Define input data for subsequent calls to DoUnfold(tau)
Int_t fIgnoredBins
number of input bins which are dropped because they have error=nullptr
Int_t GetNdf(void) const
get number of degrees of freedom determined in recent unfolding
Short_t Max(Short_t a, Short_t b)
Returns the largest of a and b.
Int_t Finite(Double_t x)
Check if it is finite with a mask in order to be consistent in presence of fast math.
Double_t Log(Double_t x)
Returns the natural logarithm of x.
Double_t Sqrt(Double_t x)
Returns the square root of x.
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Returns x raised to the power y.
Short_t Min(Short_t a, Short_t b)
Returns the smallest of a and b.
Double_t Log10(Double_t x)
Returns the common (base-10) logarithm of x.
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.
static uint64_t sum(uint64_t i)