38#define BEGIN blockDim.x *blockIdx.x + threadIdx.x 
   39#define STEP blockDim.x *gridDim.x 
   54   for (
int pdf = 1; pdf < 
nPdfs; pdf++) {
 
 
   68      const double t = 
m[i] / m0[i];
 
   69      const double u = 1 - t * t;
 
 
   99   const int degree = 
nCoef - 1;
 
  105   double binomial = 1.0;
 
  106   for (
int k = 0; k < 
nCoef; k++) {
 
  108      binomial = (binomial * (degree - k)) / (k + 1);
 
  124      for (
int k = 2; k <= degree; k += 2) {
 
  129      if (degree % 2 == 1) {
 
  138      for (
int k = 0; k < 
nCoef; k++) {
 
  153         for (
int k = 1; k <= degree; k++)
 
  155         const double _1_X = 1 / (1 - 
X);
 
  156         for (
int k = 0; k < 
nCoef; k++) {
 
  166   for (
int k = 0; k < 
nCoef; k++) {
 
  168      binomial = (binomial * (degree - k)) / (k + 1);
 
 
  179      double arg = 
X[i] - M[i];
 
 
  195      const double arg = 
X[i] - M[i];
 
  196      batches.output[i] = 1 / (arg * arg + 0.25 * 
W[i] * 
W[i]);
 
 
  208   const double r3 = log(2.0);
 
  209   const double r6 = exp(-6.0);
 
  210   const double r7 = 2 * sqrt(2 * log(2.0));
 
  215      const double hp = 1 / (SP[i] * 
r7);
 
  216      const double x1 = 
XP[i] + 0.5 * SP[i] * 
r7 * (
r1 - 1);
 
  217      const double x2 = 
XP[i] + 0.5 * SP[i] * 
r7 * (
r1 + 1);
 
  224      double y = 
X[i] - 
x1;
 
  237      if (
X[i] >= 
x1 && 
X[i] < 
x2) {
 
 
  257      const double t = (M[i] - 
M0[i]) / S[i];
 
  258      if ((A[i] > 0 && t >= -A[i]) || (A[i] < 0 && -t >= A[i])) {
 
  259         batches.output[i] = -0.5 * t * t;
 
  261         batches.output[i] = 
N[i] / (
N[i] - A[i] * A[i] - A[i] * t);
 
  264         batches.output[i] -= 0.5 * A[i] * A[i];
 
 
  285         prev[i][0] = 
batches.output[i] = 1.0;
 
  288      for (
int k = 0; k < 
nCoef; k++) {
 
  293            const double next = 2 * 
X[i] * prev[i][1] - prev[i][0];
 
  294            prev[i][0] = prev[i][1];
 
  304         for (
int k = 0; k < 
nCoef; k++) {
 
 
  319   const double ndof = 
batches.extra[0];
 
  320   const double gamma = 1 / std::tgamma(ndof / 2.0);
 
  324   constexpr double ln2 = 0.693147180559945309417232121458;
 
  326      double arg = (ndof - 2) * 
fast_log(
X[i]) - 
X[i] - ndof * 
ln2;
 
 
  346      const double ratio = 
DM[i] / 
DM0[i];
 
  347      const double arg1 = (
DM0[i] - 
DM[i]) / C[i];
 
 
  360   int lowestOrder = 
batches.extra[0];
 
  366      double xTmp = std::pow(
x[i], lowestOrder);
 
  367      for (
int k = 0; k < 
nTerms; ++k) {
 
 
  399   double gamma = -std::lgamma(
G[0]);
 
  402         batches.output[i] = (
G[i] == 1.0) / B[i];
 
  403      } 
else if (
G._isVector) {
 
  404         batches.output[i] = -std::lgamma(
G[i]);
 
  412         const double invBeta = 1 / B[i];
 
  413         double arg = (
X[i] - M[i]) * 
invBeta;
 
  416         batches.output[i] += arg * (
G[i] - 1);
 
 
  425   const double root2 = std::sqrt(2.);
 
  426   const double root2pi = std::sqrt(2. * std::atan2(0., -1.));
 
  433      const double x = 
batches.args[0][i];
 
  436      const double tau = 
batches.args[5][i];
 
  447         const double xprime = (
x - mean) / tau;
 
 
  467      const double arg = 
x[i] - mean[i];
 
 
  502      const double arg = (mass[i] - mu[i]) / lambda[i];
 
 
  523   auto case0 = [](
double x) {
 
  524      const double a1[3] = {0.04166666667, -0.01996527778, 0.02709538966};
 
  526      return 0.3989422803 * 
fast_exp(-1 / 
u - 0.5 * (
x + 1)) * (1 + (
a1[0] + (
a1[1] + 
a1[2] * 
u) * 
u) * 
u);
 
  528   auto case1 = [](
double x) {
 
  529      constexpr double p1[5] = {0.4259894875, -0.1249762550, 0.03984243700, -0.006298287635, 0.001511162253};
 
  530      constexpr double q1[5] = {1.0, -0.3388260629, 0.09594393323, -0.01608042283, 0.003778942063};
 
  535   auto case2 = [](
double x) {
 
  536      constexpr double p2[5] = {0.1788541609, 0.1173957403, 0.01488850518, -0.001394989411, 0.0001283617211};
 
  537      constexpr double q2[5] = {1.0, 0.7428795082, 0.3153932961, 0.06694219548, 0.008790609714};
 
  538      return (
p2[0] + (
p2[1] + (
p2[2] + (
p2[3] + 
p2[4] * 
x) * 
x) * 
x) * 
x) /
 
  541   auto case3 = [](
double x) {
 
  542      constexpr double p3[5] = {0.1788544503, 0.09359161662, 0.006325387654, 0.00006611667319, -0.000002031049101};
 
  543      constexpr double q3[5] = {1.0, 0.6097809921, 0.2560616665, 0.04746722384, 0.006957301675};
 
  544      return (
p3[0] + (
p3[1] + (
p3[2] + (
p3[3] + 
p3[4] * 
x) * 
x) * 
x) * 
x) /
 
  547   auto case4 = [](
double x) {
 
  548      constexpr double p4[5] = {0.9874054407, 118.6723273, 849.2794360, -743.7792444, 427.0262186};
 
  549      constexpr double q4[5] = {1.0, 106.8615961, 337.6496214, 2016.712389, 1597.063511};
 
  550      const double u = 1 / 
x;
 
  551      return u * 
u * (
p4[0] + (
p4[1] + (
p4[2] + (
p4[3] + 
p4[4] * 
u) * 
u) * 
u) * 
u) /
 
  554   auto case5 = [](
double x) {
 
  555      constexpr double p5[5] = {1.003675074, 167.5702434, 4789.711289, 21217.86767, -22324.94910};
 
  556      constexpr double q5[5] = {1.0, 156.9424537, 3745.310488, 9834.698876, 66924.28357};
 
  557      const double u = 1 / 
x;
 
  558      return u * 
u * (
p5[0] + (
p5[1] + (
p5[2] + (
p5[3] + 
p5[4] * 
u) * 
u) * 
u) * 
u) /
 
  561   auto case6 = [](
double x) {
 
  562      constexpr double p6[5] = {1.000827619, 664.9143136, 62972.92665, 475554.6998, -5743609.109};
 
  563      constexpr double q6[5] = {1.0, 651.4101098, 56974.73333, 165917.4725, -2815759.939};
 
  564      const double u = 1 / 
x;
 
  565      return u * 
u * (
p6[0] + (
p6[1] + (
p6[2] + (
p6[3] + 
p6[4] * 
u) * 
u) * 
u) * 
u) /
 
  568   auto case7 = [](
double x) {
 
  569      const double a2[2] = {-1.845568670, -4.284640743};
 
  571      return u * 
u * (1 + (
a2[0] + 
a2[1] * 
u) * 
u);
 
  579      batches.output[i] = (
X[i] - M[i]) / S[i];
 
  584      } 
else if (
batches.output[i] < -5.5) {
 
  586      } 
else if (
batches.output[i] < -1.0) {
 
  588      } 
else if (
batches.output[i] < 1.0) {
 
  590      } 
else if (
batches.output[i] < 5.0) {
 
  592      } 
else if (
batches.output[i] < 12.0) {
 
  594      } 
else if (
batches.output[i] < 50.0) {
 
  596      } 
else if (
batches.output[i] < 300.) {
 
 
  609   constexpr double rootOf2pi = 2.506628274631000502415765284811;
 
 
  626   constexpr double rootOf2pi = 2.506628274631000502415765284811;
 
 
  654      } 
else if (
rawVal[i] < 0.) {
 
  658      } 
else if (std::isnan(
rawVal[i])) {
 
 
  690   constexpr double xi = 2.3548200450309494; 
 
  696      double argln2 = 1 - (
X[i] - P[i]) * T[i] / 
W[i];
 
  700      batches.output[i] -= 2.0 / xi / xi * asinh * asinh;
 
 
  728      } 
else if (
x_i == 0) {
 
 
  740   const std::size_t nEvents = 
batches.nEvents;
 
  743   for (
size_t i = 
BEGIN; i < nEvents; i += 
STEP) {
 
  749   for (
int k = 
nCoef - 2; k >= 0; k--) {
 
  750      for (
size_t i = 
BEGIN; i < nEvents; i += 
STEP) {
 
 
  763      for (
int k = 0; k < 
nCoef; ++k) {
 
 
  775   for (
int pdf = 0; pdf < 
nPdfs; pdf++) {
 
 
  894   const double invSqrt2 = 0.707106781186547524400844362105;
 
  896      const double arg = (
X[i] - M[i]) * (
X[i] - M[i]);
 
  897      if (S[i] == 0.0 && 
W[i] == 0.0) {
 
  899      } 
else if (S[i] == 0.0) {
 
  900         batches.output[i] = 1 / (arg + 0.25 * 
W[i] * 
W[i]);
 
  901      } 
else if (
W[i] == 0.0) {
 
  909      if (S[i] != 0.0 && 
W[i] != 0.0) {
 
  912         const double factor = 
W[i] > 0.0 ? 0.5 : -0.5;
 
  913         RooHeterogeneousMath::STD::complex<double> z(
batches.output[i] * (
X[i] - M[i]),
 
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
Option_t Option_t TPoint TPoint const char x2
Option_t Option_t TPoint TPoint const char x1
__rooglobal__ void computeBreitWigner(Batches &batches)
std::vector< void(*)(Batches &)> getFunctions()
Returns a std::vector of pointers to the compute functions in this file.
__rooglobal__ void computeNovosibirsk(Batches &batches)
__rooglobal__ void computeExpPoly(Batches &batches)
__rooglobal__ void computeChiSquare(Batches &batches)
__rooglobal__ void computeDeltaFunction(Batches &batches)
__rooglobal__ void computeGamma(Batches &batches)
__rooglobal__ void computeTruthModelQuadBasis(Batches &batches)
__rooglobal__ void computeTruthModelExpBasis(Batches &batches)
__rooglobal__ void computeTruthModelLinBasis(Batches &batches)
__rooglobal__ void computeLognormalStandard(Batches &batches)
__rooglobal__ void computeTruthModelCoshBasis(Batches &batches)
__rooglobal__ void computeAddPdf(Batches &batches)
__rooglobal__ void computeBifurGauss(Batches &batches)
__rooglobal__ void computeTruthModelSinhBasis(Batches &batches)
__rooglobal__ void computeLognormal(Batches &batches)
__rooglobal__ void computeArgusBG(Batches &batches)
__rooglobal__ void computeGaussian(Batches &batches)
__rooglobal__ void computeLandau(Batches &batches)
__rooglobal__ void computeTruthModelSinBasis(Batches &batches)
__rooglobal__ void computePower(Batches &batches)
__rooglobal__ void computeExponentialNeg(Batches &batches)
__rooglobal__ void computePoisson(Batches &batches)
__rooglobal__ void computeJohnson(Batches &batches)
__rooglobal__ void computeBMixDecay(Batches &batches)
__rooglobal__ void computeChebychev(Batches &batches)
__rooglobal__ void computeNormalizedPdf(Batches &batches)
__rooglobal__ void computeBernstein(Batches &batches)
__rooglobal__ void computeRatio(Batches &batches)
__rooglobal__ void computePolynomial(Batches &batches)
__rooglobal__ void computeExponential(Batches &batches)
__rooglobal__ void computeTruthModelCosBasis(Batches &batches)
__rooglobal__ void computeGaussModelExpBasis(Batches &batches)
__rooglobal__ void computeBukin(Batches &batches)
__rooglobal__ void computeDstD0BG(Batches &batches)
__rooglobal__ void computeNegativeLogarithms(Batches &batches)
__rooglobal__ void computeIdentity(Batches &batches)
__rooglobal__ void computeCBShape(Batches &batches)
__rooglobal__ void computeProdPdf(Batches &batches)
__rooglobal__ void computeVoigtian(Batches &batches)
Namespace for dispatching RooFit computations to various backends.
__roodevice__ double fast_exp(double x)
__roodevice__ double fast_sin(double x)
constexpr std::size_t bufferSize
__roodevice__ double fast_log(double x)
__roodevice__ double fast_cos(double x)
__roodevice__ double fast_isqrt(double x)
STD::complex< double > faddeeva(STD::complex< double > z)
STD::complex< double > evalCerf(double swt, double u, double c)
constexpr Double_t TwoPi()
#define R1(v, w, x, y, z, i)
#define R2(v, w, x, y, z, i)
static double packFloatIntoNaN(float payload)
Pack float into mantissa of a NaN.