20 return sin((1.7+
x)*(
x-0.3)-2.3*(
y+0.7));
29 for (
Int_t i=0; i<1000; i++) {
40 "Entry$%2",
"(Entry$%2)==0");
41 mlp->
Train(150,
"graph update=10");
45 mlpa->GatherInformations();
55 mlpa->DrawTruthDeviations();
60 mlpa->DrawTruthDeviationInsOut();
64 mlpa->GetIOTree()->Draw(
"Out.Out0-True.True0:True.True0>>hDelta",
"",
"goff");
66 hDelta->SetTitle(
"Difference between ANN output and truth vs. truth");
76 for (
Int_t ix=0; ix<15; ix++) {
78 for (
Int_t iy=0; iy<15; iy++) {
87 "ANN extrapolation, ANN output - truth",
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
Graphics object made of three arrays X, Y and Z with the same number of points each.
2-D histogram with a float per channel (see TH1 documentation)
This utility class contains a set of tests useful when developing a neural network.
This class describes a neural network.
Double_t Evaluate(Int_t index, Double_t *params) const
Returns the Neural Net for a given set of input parameters #parameters must equal #input neurons.
void Train(Int_t nEpoch, Option_t *option="text", Double_t minE=0)
Train the network.
A simple TTree restricted to a list of float variables only.
Int_t Fill() override
Fill a Ntuple with current values in fArgs.
This is the base class for the ROOT Random number generators.