103   if ((
fX<0) || (
fY<0) || (
fZ<0)) {
 
  129   if ((
fX<0) || (
fY<0) || (
fZ<0)) {
 
  205         norm[0] = norm[1] = 0;
 
  211         norm[2] = - 
fTyz*cty;
 
  218   if (norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2]<0) {
 
  246   if (iact<3 && safe) {
 
  255   saf[0] = 
fZ+point[2];
 
  256   saf[1] = 
fZ-point[2];
 
  258      s = (dir[2]>0)?(saf[1]/dir[2]):(-saf[0]/dir[2]);
 
  260      if (s<snxt) snxt = s;
 
  268      s = (dy>0)?(saf[1]/dy):(-saf[0]/dy);
 
  270      if (s<snxt) snxt = s;
 
  278      s = (dx>0)?(saf[1]/dx):(-saf[0]/dx);
 
  280      if (s<snxt) snxt = s;
 
  290   if (iact<3 && safe) {
 
  320      if (safz>safx && safz>safy) {
 
  334      xnew = point[0]+snxt*dir[0];
 
  335      ynew = point[1]+snxt*dir[1];
 
  336      znew = (point[2]>0)?
fZ:(-
fZ);
 
  345      znew = point[2]+snxt*dir[2];
 
  348         xnew = point[0]+snxt*dir[0];
 
  355      znew = point[2]+snxt*dir[2];
 
  357         ynew = point[1]+snxt*dir[1];
 
  397         Error(
"Divide", 
"Wrong axis type for division");
 
  405   for (
Int_t ic=0; ic<ndiv; ic++) {
 
  456      Error(
"GetFittingBox", 
"cannot handle parametrized rotated volumes");
 
  463      Error(
"GetFittingBox", 
"wrong matrix - parametrized box is outside this");
 
  468   dd[0] = parambox->
GetDX();
 
  469   dd[1] = parambox->
GetDY();
 
  470   dd[2] = parambox->
GetDZ();
 
  475         Error(
"GetFittingBox", 
"wrong matrix");
 
  479   if (dd[0]>=0 && dd[1]>=0) {
 
  507   for (
Int_t iaxis=0; iaxis<2; iaxis++) {
 
  508      if (dd[iaxis]>=0) 
continue;
 
  510      for (
Int_t ivert=0; ivert<4; ivert++) {
 
  530      Error(
"GetMakeRuntimeShape", 
"invalid mother");
 
  548   printf(
"*** Shape %s: TGeoPara ***\n", 
GetName());
 
  549   printf(
"    dX = %11.5f\n", 
fX);
 
  550   printf(
"    dY = %11.5f\n", 
fY);
 
  551   printf(
"    dZ = %11.5f\n", 
fZ);
 
  552   printf(
"    alpha = %11.5f\n", 
fAlpha);
 
  553   printf(
"    theta = %11.5f\n", 
fTheta);
 
  554   printf(
"    phi   = %11.5f\n", 
fPhi);
 
  555   printf(
" Bounding box:\n");
 
  581   for (
Int_t i=0; i<3; i++) saf[i]=-saf[i];
 
  592   out << 
"   dx    = " << 
fX << 
";" << std::endl;
 
  593   out << 
"   dy    = " << 
fY << 
";" << std::endl;
 
  594   out << 
"   dz    = " << 
fZ << 
";" << std::endl;
 
  595   out << 
"   alpha = " << 
fAlpha<< 
";" << std::endl;
 
  596   out << 
"   theta = " << 
fTheta << 
";" << std::endl;
 
  597   out << 
"   phi   = " << 
fPhi << 
";" << std::endl;
 
  598   out << 
"   TGeoShape *" << 
GetPointerName() << 
" = new TGeoPara(\"" << 
GetName() << 
"\",dx,dy,dz,alpha,theta,phi);" << std::endl;
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t points
R__EXTERN TGeoManager * gGeoManager
virtual const Double_t * GetOrigin() const
void SetBoxDimensions(Double_t dx, Double_t dy, Double_t dz, Double_t *origin=nullptr)
Set parameters of the box.
virtual void InspectShape() const
Prints shape parameters.
virtual Double_t GetDX() const
virtual Double_t GetDZ() const
virtual void Sizeof3D() const
virtual Double_t GetDY() const
virtual void GetBoundingCylinder(Double_t *param) const
Fill vector param[4] with the bounding cylinder parameters.
TGeoVolumeMulti * MakeVolumeMulti(const char *name, TGeoMedium *medium)
Make a TGeoVolumeMulti handling a list of volumes.
Geometrical transformation package.
Bool_t IsRotation() const
virtual void LocalToMaster(const Double_t *local, Double_t *master) const
convert a point by multiplying its column vector (x, y, z, 1) to matrix inverse
Node containing an offset.
virtual void Sizeof3D() const
fill size of this 3-D object
virtual TGeoShape * GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix *mat) const
in case shape has some negative parameters, these has to be computed in order to fit the mother
virtual Int_t GetFittingBox(const TGeoBBox *parambox, TGeoMatrix *mat, Double_t &dx, Double_t &dy, Double_t &dz) const
Fills real parameters of a positioned box inside this. Returns 0 if successful.
virtual void DistFromInside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specified by dirs. Store output in dist...
virtual void Contains_v(const Double_t *points, Bool_t *inside, Int_t vecsize) const
Check the inside status for each of the points in the array.
virtual Double_t DistFromInside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=nullptr) const
compute distance from inside point to surface of the para Boundary safe algorithm.
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
virtual Double_t DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=nullptr) const
compute distance from inside point to surface of the para
virtual void SetDimensions(Double_t *param)
Set dimensions starting from an array.
virtual void GetBoundingCylinder(Double_t *param) const
Fill vector param[4] with the bounding cylinder parameters.
virtual TGeoVolume * Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv, Double_t start, Double_t step)
Divide this parallelepiped shape belonging to volume "voldiv" into ndiv equal volumes called divname,...
TGeoPara()
Default constructor.
virtual void ComputeBBox()
compute bounding box
virtual void SetPoints(Double_t *points) const
Create PARA mesh points.
virtual Double_t Safety(const Double_t *point, Bool_t in=kTRUE) const
computes the closest distance from given point to this shape, according to option.
virtual void ComputeNormal(const Double_t *point, const Double_t *dir, Double_t *norm)
Compute normal to closest surface from POINT.
virtual ~TGeoPara()
destructor
virtual Double_t Capacity() const
Computes capacity of the shape in [length^3].
virtual Double_t GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const
Get range of shape for a given axis.
virtual void InspectShape() const
print shape parameters
virtual void DistFromOutside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specified by dirs. Store output in dist...
virtual void ComputeNormal_v(const Double_t *points, const Double_t *dirs, Double_t *norms, Int_t vecsize)
Compute the normal for an array o points so that norm.dot.dir is positive Input: Arrays of point coor...
virtual void Safety_v(const Double_t *points, const Bool_t *inside, Double_t *safe, Int_t vecsize) const
Compute safe distance from each of the points in the input array.
virtual Bool_t Contains(const Double_t *point) const
test if point is inside this sphere test Z range
Base finder class for patterns.
void SetDivIndex(Int_t index)
Base abstract class for all shapes.
void SetShapeBit(UInt_t f, Bool_t set)
Equivalent of TObject::SetBit.
static Bool_t IsSameWithinTolerance(Double_t a, Double_t b)
Check if two numbers differ with less than a tolerance.
const char * GetPointerName() const
Provide a pointer name containing uid.
virtual const char * GetName() const
Get the shape name.
Bool_t TestShapeBit(UInt_t f) const
void AddVolume(TGeoVolume *vol)
Add a volume with valid shape to the list of volumes.
TGeoVolume, TGeoVolumeMulti, TGeoVolumeAssembly are the volume classes.
void AddNodeOffset(TGeoVolume *vol, Int_t copy_no, Double_t offset=0, Option_t *option="")
Add a division node to the list of nodes.
TGeoMedium * GetMedium() const
void SetFinder(TGeoPatternFinder *finder)
Int_t GetNdaughters() const
TObject * At(Int_t idx) const override
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
virtual const char * ClassName() const
Returns name of class to which the object belongs.
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
const char * Data() const
Long64_t LocMin(Long64_t n, const T *a)
Returns index of array with the minimum element.
T1 Sign(T1 a, T2 b)
Returns a value with the magnitude of a and the sign of b.
Long64_t LocMax(Long64_t n, const T *a)
Returns index of array with the maximum element.
constexpr Double_t DegToRad()
Conversion from degree to radian: .
Double_t Sqrt(Double_t x)
Returns the square root of x.
Short_t Min(Short_t a, Short_t b)
Returns the smallest of a and b.
Double_t Cos(Double_t)
Returns the cosine of an angle of x radians.
Double_t Sin(Double_t)
Returns the sine of an angle of x radians.
Double_t Tan(Double_t)
Returns the tangent of an angle of x radians.
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.