4#ifndef ROOT_Math_Functions 
    5#define ROOT_Math_Functions 
   61template <
class T, 
unsigned int D> 
class SVector;
 
   86inline const T 
Maximum(
const T& lhs, 
const T& rhs) {
 
   87  return (lhs > rhs) ? lhs : rhs;
 
  100inline const T 
Minimum(
const T& lhs, 
const T& rhs) {
 
  101  return (lhs < rhs) ? lhs : rhs;
 
  114  return (
x-
static_cast<int>(
x) < 0.5) ? 
static_cast<int>(
x) : 
static_cast<int>(
x+1);
 
  128inline int Sign(
const T& 
x) { 
return (
x==0)? 0 : (
x<0)? -1 : 1; }
 
  133template <
unsigned int I>
 
  135  template <
class A, 
class B, 
class T>
 
  136  static inline T 
f(
const A& lhs, 
const B& rhs, 
const T& 
x) {
 
  147  template <
class A, 
class B, 
class T>
 
  148  static inline T 
f(
const A& lhs, 
const B& rhs, 
const T& ) {
 
  149    return lhs.apply(0) * rhs.apply(0);
 
  164template <
class T, 
unsigned int D>
 
  172template <
class A, 
class T, 
unsigned int D>
 
  180template <
class A, 
class T, 
unsigned int D>
 
  189template <
class A, 
class B, 
class T, 
unsigned int D>
 
  198template <
unsigned int I>
 
  200  template <
class A, 
class T>
 
  201  static inline T 
f(
const A& rhs, 
const T& 
x) {
 
  212  template <
class A, 
class T>
 
  213  static inline T 
f(
const A& rhs, 
const T& ) {
 
  214    return Square(rhs.apply(0));
 
  229template <
class T, 
unsigned int D>
 
  237template <
class A, 
class T, 
unsigned int D>
 
  252template <
class T, 
unsigned int D>
 
  254  return std::sqrt(
Mag2(rhs));
 
  260template <
class A, 
class T, 
unsigned int D>
 
  262  return std::sqrt(
Mag2(rhs));
 
  283template <
class A, 
class T>
 
  301  return std::sqrt(
Lmag2(rhs));
 
  307template <
class A, 
class T>
 
  309  return std::sqrt(
Lmag2(rhs));
 
  335template <
class A, 
class T>
 
  348template <
class T, 
class A>
 
  361template <
class A, 
class B, 
class T>
 
  381template <
class T, 
unsigned int D>
 
  389template <
class A, 
class T, 
unsigned int D>
 
  398template <
class T, 
unsigned int D>
 
  399inline VecExpr<BinaryOp<DivOp<T>, SVector<T,D>, Constant<T>, T>, T, D>
 
  400 unit(
const SVector<T,D>& lhs) {
 
  401  typedef BinaryOp<DivOp<T>, SVector<T,D>, Constant<T>, T> DivOpBinOp;
 
  402  return VecExpr<DivOpBinOp,T,D>(DivOpBinOp(DivOp<T>(),lhs,Constant<T>(mag(lhs))));
 
  408template <
class A, 
class T, 
unsigned int D>
 
  409inline VecExpr<BinaryOp<DivOp<T>, VecExpr<A,T,D>, Constant<T>, T>, T, D>
 
  410 unit(
const VecExpr<A,T,D>& lhs) {
 
  411  typedef BinaryOp<DivOp<T>, VecExpr<A,T,D>, Constant<T>, T> DivOpBinOp;
 
  412  return VecExpr<DivOpBinOp,T,D>(DivOpBinOp(DivOp<T>(),lhs,Constant<T>(mag(lhs))));
 
SVector: a generic fixed size Vector class.
SVector< T, D > & Unit()
transform vector into a vector of length 1
T apply(unsigned int i) const
access the parse tree. Index starts from zero
Expression wrapper class for Vector objects.
T apply(unsigned int i) const
const T Minimum(const T &lhs, const T &rhs)
minimum.
int Sign(const T &x)
sign.
int Round(const T &x)
round.
const T Maximum(const T &lhs, const T &rhs)
maximum.
SVector< T, D > Unit(const SVector< T, D > &rhs)
Unit.
SVector< T, 3 > Cross(const SVector< T, 3 > &lhs, const SVector< T, 3 > &rhs)
Vector Cross Product (only for 3-dim vectors) .
T Lmag2(const SVector< T, 4 > &rhs)
Lmag2: Square of Minkowski Lorentz-Vector norm (only for 4D Vectors) Template to compute .
T Mag2(const SVector< T, D > &rhs)
Vector magnitude square Template to compute .
T Mag(const SVector< T, D > &rhs)
Vector magnitude (Euclidean norm) Compute : .
T Lmag(const SVector< T, 4 > &rhs)
Lmag: Minkowski Lorentz-Vector norm (only for 4-dim vectors) Length of a vector Lorentz-Vector: .
Namespace for new Math classes and functions.
This file contains a specialised ROOT message handler to test for diagnostic in unit tests.