23#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION 
   24#include <numpy/arrayobject.h> 
   74   fMinWeightFractionLeaf(0.0),
 
   80   fMaxLeafNodes(
"None"),
 
 
   94   fMinWeightFractionLeaf(0.0),
 
  100   fMaxLeafNodes(
"None"),
 
 
  126      loss function to be optimized. 'log_loss' refers to\ 
  127      logistic loss for classification\ 
  128      with probabilistic outputs. For loss 'exponential' gradient\ 
  129      boosting recovers the AdaBoost algorithm.");
 
  132      learning rate shrinks the contribution of each tree by `learning_rate`.\ 
  133      There is a trade-off between learning_rate and n_estimators.");
 
  136      The number of boosting stages to perform. Gradient boosting\ 
  137      is fairly robust to over-fitting so a large number usually\ 
  138      results in better performance.");
 
  141      The fraction of samples to be used for fitting the individual base\ 
  142      learners. If smaller than 1.0 this results in Stochastic Gradient\ 
  143      Boosting. `subsample` interacts with the parameter `n_estimators`.\ 
  144      Choosing `subsample < 1.0` leads to a reduction of variance\ 
  145      and an increase in bias.");
 
  148      The minimum number of samples required to split an internal node.");
 
  151      The minimum number of samples in newly created leaves.  A split is \ 
  152      discarded if after the split, one of the leaves would contain less then \ 
  153      ``min_samples_leaf`` samples.");
 
  156      The minimum weighted fraction of the input samples required to be at a \ 
  160      The maximum depth of the tree. If None, then nodes are expanded until \ 
  161      all leaves are pure or until all leaves contain less than \ 
  162      min_samples_split samples. \ 
  163      Ignored if ``max_leaf_nodes`` is not None.");
 
  166      An estimator object that is used to compute the initial\ 
  167      predictions. ``init`` has to provide ``fit`` and ``predict``.\ 
  168      If None it uses ``loss.init_estimator`");
 
  171      If int, random_state is the seed used by the random number generator;\ 
  172      If RandomState instance, random_state is the random number generator;\ 
  173      If None, the random number generator is the RandomState instance used\ 
  179      Controls the verbosity of the tree building process.");
 
  182      Grow trees with ``max_leaf_nodes`` in best-first fashion.\ 
  183      Best nodes are defined as relative reduction in impurity.\ 
  184      If None then unlimited number of leaf nodes.\ 
  185      If not None then ``max_depth`` will be ignored.");
 
  188      When set to ``True``, reuse the solution of the previous call to fit\ 
  189      and add more estimators to the ensemble, otherwise, just fit a whole\ 
  193      "Store trained classifier in this file");
 
 
  200   if (
fLoss != 
"log_loss" && 
fLoss != 
"exponential") {
 
  202            << 
" The options are 'log_loss' or 'exponential'." << 
Endl;
 
  208      Log() << kFATAL << 
"LearningRate <= 0 ... that does not work!" << 
Endl;
 
  214      Log() << kFATAL << 
"NEstimators <= 0 ... that does not work!" << 
Endl;
 
  220      Log() << kFATAL << 
"MinSamplesSplit < 0 ... that does not work!" << 
Endl;
 
  226      Log() << kFATAL << 
"Subsample < 0 ... that does not work!" << 
Endl;
 
  232      Log() << kFATAL << 
"MinSamplesLeaf < 0 ... that does not work!" << 
Endl;
 
  238      Log() << kFATAL << 
"MinSamplesSplit < 0 ... that does not work!" << 
Endl;
 
  244      Log() << kFATAL << 
"MinWeightFractionLeaf < 0 ... that does not work !" << 
Endl;
 
  250      Log() << kFATAL << 
" MaxDepth <= 0 ... that does not work !! " << 
Endl;
 
  258            << 
" The options are None or BaseEstimator, which is an estimator object that" 
  259            << 
"is used to compute the initial predictions. " 
  260            << 
"'init' has to provide 'fit' and 'predict' methods." 
  261            << 
" If None it uses 'loss.init_estimator'." << 
Endl;
 
  268            << 
" If int, random_state is the seed used by the random number generator;" 
  269            << 
" If RandomState instance, random_state is the random number generator;" 
  270            << 
" If None, the random number generator is the RandomState instance used by 'np.random'." 
  283            << 
"int, float, string or None, optional (default='auto')" 
  284            << 
"The number of features to consider when looking for the best split:" 
  285            << 
"If int, then consider `max_features` features at each split." 
  286            << 
"If float, then `max_features` is a percentage and" 
  287            << 
"`int(max_features * n_features)` features are considered at each split." 
  288            << 
"If 'auto', then `max_features=sqrt(n_features)`." 
  289            << 
"If 'sqrt', then `max_features=sqrt(n_features)`." 
  290            << 
"If 'log2', then `max_features=log2(n_features)`." 
  291            << 
"If None, then `max_features=n_features`." << 
Endl;
 
  297            << 
" The options are None or integer." << 
Endl;
 
 
  365   PyRunString(
"classifier = sklearn.ensemble.GradientBoostingClassifier(loss=loss, learning_rate=learningRate, n_estimators=nEstimators, max_depth=maxDepth, min_samples_split=minSamplesSplit, min_samples_leaf=minSamplesLeaf, min_weight_fraction_leaf=minWeightFractionLeaf, subsample=subsample, max_features=maxFeatures, max_leaf_nodes=maxLeafNodes, init=init, verbose=verbose, warm_start=warmStart, random_state=randomState)",
 
  366      "Failed to setup classifier");
 
  370   PyRunString(
"dump = classifier.fit(trainData, trainDataClasses, trainDataWeights)", 
"Failed to train classifier");
 
  375      Log() << kFATAL << 
"Can't create classifier object from GradientBoostingClassifier" << 
Endl;
 
 
  412            << 
" sample (" << nEvents << 
" events)" << 
Endl;
 
  435   for (
int i = 0; i < nEvents; ++i) {
 
  444            << 
"Elapsed time for evaluation of " << nEvents <<  
" events: " 
  445            << 
timer.GetElapsedTime() << 
"       " << 
Endl;
 
 
  546   if(
pRanking == 0) 
Log() << kFATAL << 
"Failed to get ranking from classifier" << 
Endl;
 
 
  565   Log() << 
"A gradient tree boosting classifier builds a model from an ensemble" << 
Endl;
 
  566   Log() << 
"of decision trees, which are adapted each boosting step to fit better" << 
Endl;
 
  567   Log() << 
"to previously misclassified events." << 
Endl;
 
  569   Log() << 
"Check out the scikit-learn documentation for more information." << 
Endl;
 
 
#define REGISTER_METHOD(CLASS)
for example
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
OptionBase * DeclareOptionRef(T &ref, const TString &name, const TString &desc="")
Class that contains all the data information.
UInt_t GetNClasses() const
const Event * GetEvent() const
returns event without transformations
Types::ETreeType GetCurrentType() const
Long64_t GetNEvents(Types::ETreeType type=Types::kMaxTreeType) const
Long64_t GetNTrainingEvents() const
void SetCurrentEvent(Long64_t ievt) const
const Event * GetTrainingEvent(Long64_t ievt) const
PyGILState_STATE m_GILState
virtual void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility they are hence without any...
const char * GetName() const
Bool_t IsModelPersistence() const
const TString & GetWeightFileDir() const
const TString & GetMethodName() const
DataSetInfo & DataInfo() const
virtual void TestClassification()
initialization
UInt_t GetNVariables() const
void NoErrorCalc(Double_t *const err, Double_t *const errUpper)
const TString & GetInputLabel(Int_t i) const
PyObject * pMinSamplesLeaf
Double_t fMinWeightFractionLeaf
Double_t GetMvaValue(Double_t *errLower=nullptr, Double_t *errUpper=nullptr)
std::vector< Double_t > mvaValues
std::vector< Double_t > GetMvaValues(Long64_t firstEvt=0, Long64_t lastEvt=-1, Bool_t logProgress=false)
get all the MVA values for the events of the current Data type
std::vector< Float_t > classValues
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
void GetHelpMessage() const
MethodPyGTB(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
const Ranking * CreateRanking()
virtual void TestClassification()
initialization
std::vector< Float_t > & GetMulticlassValues()
virtual void ReadModelFromFile()
TString fFilenameClassifier
PyObject * pMinSamplesSplit
PyObject * pMinWeightFractionLeaf
static int PyIsInitialized()
Check Python interpreter initialization status.
PyObject * Eval(TString code)
Evaluate Python code.
static void PyInitialize()
Initialize Python interpreter.
static void Serialize(TString file, PyObject *classifier)
Serialize Python object.
static Int_t UnSerialize(TString file, PyObject **obj)
Unserialize Python object.
void PyRunString(TString code, TString errorMessage="Failed to run python code", int start=256)
Execute Python code from string.
Ranking for variables in method (implementation)
virtual void AddRank(const Rank &rank)
Add a new rank take ownership of it.
Timing information for training and evaluation of MVA methods.
Singleton class for Global types used by TMVA.
@ kSignal
Never change this number - it is elsewhere assumed to be zero !
const char * Data() const
create variable transformations
MsgLogger & Endl(MsgLogger &ml)