|  | 
| class | AbsoluteDeviationLossFunction | 
|  | Absolute Deviation Loss Function.  More... 
 | 
|  | 
| class | AbsoluteDeviationLossFunctionBDT | 
|  | Absolute Deviation BDT Loss Function.  More... 
 | 
|  | 
| class | AbsValue | 
|  | 
| class | BDTEventWrapper | 
|  | 
| class | BinarySearchTree | 
|  | A simple Binary search tree including a volume search method.  More... 
 | 
|  | 
| class | BinarySearchTreeNode | 
|  | Node for the BinarySearch or Decision Trees.  More... 
 | 
|  | 
| class | BinaryTree | 
|  | Base class for BinarySearch and Decision Trees.  More... 
 | 
|  | 
| class | CCPruner | 
|  | A helper class to prune a decision tree using the Cost Complexity method (see Classification and Regression Trees by Leo Breiman et al)  More... 
 | 
|  | 
| class | CCTreeWrapper | 
|  | 
| class | ClassifierFactory | 
|  | This is the MVA factory.  More... 
 | 
|  | 
| class | ClassInfo | 
|  | Class that contains all the information of a class.  More... 
 | 
|  | 
| class | Config | 
|  | Singleton class for global configuration settings used by TMVA.  More... 
 | 
|  | 
| class | Configurable | 
|  | 
| class | ConvergenceTest | 
|  | Check for convergence.  More... 
 | 
|  | 
| class | CostComplexityPruneTool | 
|  | A class to prune a decision tree using the Cost Complexity method.  More... 
 | 
|  | 
| class | CrossEntropy | 
|  | Implementation of the CrossEntropy as separation criterion.  More... 
 | 
|  | 
| class | CrossValidation | 
|  | Class to perform cross validation, splitting the dataloader into folds.  More... 
 | 
|  | 
| class | CrossValidationFoldResult | 
|  | 
| class | CrossValidationResult | 
|  | Class to save the results of cross validation, the metric for the classification ins ROC and you can ROC curves ROC integrals, ROC average and ROC standard deviation.  More... 
 | 
|  | 
| class | CvSplit | 
|  | 
| class | CvSplitKFolds | 
|  | 
| class | CvSplitKFoldsExpr | 
|  | 
| class | DataInputHandler | 
|  | Class that contains all the data information.  More... 
 | 
|  | 
| class | DataLoader | 
|  | 
| class | DataSet | 
|  | Class that contains all the data information.  More... 
 | 
|  | 
| class | DataSetFactory | 
|  | Class that contains all the data information.  More... 
 | 
|  | 
| class | DataSetInfo | 
|  | Class that contains all the data information.  More... 
 | 
|  | 
| class | DataSetManager | 
|  | Class that contains all the data information.  More... 
 | 
|  | 
| class | DecisionTree | 
|  | Implementation of a Decision Tree.  More... 
 | 
|  | 
| class | DecisionTreeNode | 
|  | 
| struct | DeleteFunctor_t | 
|  | 
| class | DTNodeTrainingInfo | 
|  | 
| class | Envelope | 
|  | Abstract base class for all high level ml algorithms, you can book ml methods like BDT, MLP.  More... 
 | 
|  | 
| class | Event | 
|  | 
| class | Executor | 
|  | Base Executor class.  More... 
 | 
|  | 
| class | ExpectedErrorPruneTool | 
|  | A helper class to prune a decision tree using the expected error (C4.5) method.  More... 
 | 
|  | 
| class | Factory | 
|  | This is the main MVA steering class.  More... 
 | 
|  | 
| class | FitterBase | 
|  | Base class for TMVA fitters.  More... 
 | 
|  | 
| class | GeneticAlgorithm | 
|  | Base definition for genetic algorithm.  More... 
 | 
|  | 
| class | GeneticFitter | 
|  | Fitter using a Genetic Algorithm.  More... 
 | 
|  | 
| class | GeneticGenes | 
|  | Cut optimisation interface class for genetic algorithm.  More... 
 | 
|  | 
| class | GeneticPopulation | 
|  | Population definition for genetic algorithm.  More... 
 | 
|  | 
| class | GeneticRange | 
|  | Range definition for genetic algorithm.  More... 
 | 
|  | 
| class | GiniIndex | 
|  | Implementation of the GiniIndex as separation criterion.  More... 
 | 
|  | 
| class | GiniIndexWithLaplace | 
|  | Implementation of the GiniIndex With Laplace correction as separation criterion.  More... 
 | 
|  | 
| class | HuberLossFunction | 
|  | Huber Loss Function.  More... 
 | 
|  | 
| class | HuberLossFunctionBDT | 
|  | Huber BDT Loss Function.  More... 
 | 
|  | 
| class | HyperParameterOptimisation | 
|  | 
| class | HyperParameterOptimisationResult | 
|  | 
| class | IFitterTarget | 
|  | Interface for a fitter 'target'.  More... 
 | 
|  | 
| class | IMethod | 
|  | Interface for all concrete MVA method implementations.  More... 
 | 
|  | 
| class | Increment | 
|  | 
| class | Interval | 
|  | The TMVA::Interval Class.  More... 
 | 
|  | 
| class | IPruneTool | 
|  | IPruneTool - a helper interface class to prune a decision tree.  More... 
 | 
|  | 
| class | IPythonInteractive | 
|  | This class is needed by JsMVA, and it's a helper class for tracking errors during the training in Jupyter notebook.  More... 
 | 
|  | 
| class | KDEKernel | 
|  | KDE Kernel for "smoothing" the PDFs.  More... 
 | 
|  | 
| class | LDA | 
|  | 
| class | LeastSquaresLossFunction | 
|  | Least Squares Loss Function.  More... 
 | 
|  | 
| class | LeastSquaresLossFunctionBDT | 
|  | Least Squares BDT Loss Function.  More... 
 | 
|  | 
| class | LogInterval | 
|  | The TMVA::Interval Class.  More... 
 | 
|  | 
| class | LossFunction | 
|  | 
| class | LossFunctionBDT | 
|  | 
| class | LossFunctionEventInfo | 
|  | 
| class | MCFitter | 
|  | Fitter using Monte Carlo sampling of parameters.  More... 
 | 
|  | 
| class | MethodANNBase | 
|  | Base class for all TMVA methods using artificial neural networks.  More... 
 | 
|  | 
| class | MethodBase | 
|  | Virtual base Class for all MVA method.  More... 
 | 
|  | 
| class | MethodBayesClassifier | 
|  | Description of bayesian classifiers.  More... 
 | 
|  | 
| class | MethodBDT | 
|  | Analysis of Boosted Decision Trees.  More... 
 | 
|  | 
| class | MethodBoost | 
|  | Class for boosting a TMVA method.  More... 
 | 
|  | 
| class | MethodC50 | 
|  | 
| class | MethodCategory | 
|  | Class for categorizing the phase space.  More... 
 | 
|  | 
| class | MethodCFMlpANN | 
|  | Interface to Clermond-Ferrand artificial neural network.  More... 
 | 
|  | 
| class | MethodCFMlpANN_Utils | 
|  | Implementation of Clermond-Ferrand artificial neural network.  More... 
 | 
|  | 
| class | MethodCompositeBase | 
|  | Virtual base class for combining several TMVA method.  More... 
 | 
|  | 
| class | MethodCrossValidation | 
|  | 
| class | MethodCuts | 
|  | Multivariate optimisation of signal efficiency for given background efficiency, applying rectangular minimum and maximum requirements.  More... 
 | 
|  | 
| class | MethodDL | 
|  | 
| class | MethodDNN | 
|  | Deep Neural Network Implementation.  More... 
 | 
|  | 
| class | MethodDT | 
|  | Analysis of Boosted Decision Trees.  More... 
 | 
|  | 
| class | MethodFDA | 
|  | Function discriminant analysis (FDA).  More... 
 | 
|  | 
| class | MethodFisher | 
|  | Fisher and Mahalanobis Discriminants (Linear Discriminant Analysis)  More... 
 | 
|  | 
| class | MethodHMatrix | 
|  | H-Matrix method, which is implemented as a simple comparison of chi-squared estimators for signal and background, taking into account the linear correlations between the input variables.  More... 
 | 
|  | 
| class | MethodInfo | 
|  | 
| class | MethodKNN | 
|  | Analysis of k-nearest neighbor.  More... 
 | 
|  | 
| class | MethodLD | 
|  | Linear Discriminant.  More... 
 | 
|  | 
| class | MethodLikelihood | 
|  | Likelihood analysis ("non-parametric approach")  More... 
 | 
|  | 
| class | MethodMLP | 
|  | Multilayer Perceptron class built off of MethodANNBase.  More... 
 | 
|  | 
| class | MethodPDEFoam | 
|  | The PDEFoam method is an extension of the PDERS method, which divides the multi-dimensional phase space in a finite number of hyper-rectangles (cells) of constant event density.  More... 
 | 
|  | 
| class | MethodPDERS | 
|  | This is a generalization of the above Likelihood methods to \( N_{var} \) dimensions, where \( N_{var} \) is the number of input variables used in the MVA.  More... 
 | 
|  | 
| class | MethodPyAdaBoost | 
|  | 
| class | MethodPyGTB | 
|  | 
| class | MethodPyKeras | 
|  | 
| class | MethodPyRandomForest | 
|  | 
| class | MethodPyTorch | 
|  | 
| class | MethodRSNNS | 
|  | 
| class | MethodRSVM | 
|  | 
| class | MethodRuleFit | 
|  | J Friedman's RuleFit method.  More... 
 | 
|  | 
| class | MethodRXGB | 
|  | 
| class | MethodSVM | 
|  | SMO Platt's SVM classifier with Keerthi & Shavade improvements.  More... 
 | 
|  | 
| class | MethodTMlpANN | 
|  | This is the TMVA TMultiLayerPerceptron interface class.  More... 
 | 
|  | 
| class | MinuitFitter | 
|  | /Fitter using MINUIT  More... 
 | 
|  | 
| class | MinuitWrapper | 
|  | Wrapper around MINUIT.  More... 
 | 
|  | 
| class | MisClassificationError | 
|  | Implementation of the MisClassificationError as separation criterion.  More... 
 | 
|  | 
| class | Monitoring | 
|  | 
| class | MsgLogger | 
|  | ostringstream derivative to redirect and format output  More... 
 | 
|  | 
| class | Node | 
|  | Node for the BinarySearch or Decision Trees.  More... 
 | 
|  | 
| class | null_t | 
|  | 
| class | OptimizeConfigParameters | 
|  | 
| class | Option | 
|  | 
| class | Option< T * > | 
|  | 
| class | OptionBase | 
|  | Class for TMVA-option handling.  More... 
 | 
|  | 
| class | OptionMap | 
|  | class to storage options for the differents methods  More... 
 | 
|  | 
| class | PDEFoam | 
|  | Implementation of PDEFoam.  More... 
 | 
|  | 
| class | PDEFoamCell | 
|  | 
| class | PDEFoamDecisionTree | 
|  | This PDEFoam variant acts like a decision tree and stores in every cell the discriminant.  More... 
 | 
|  | 
| class | PDEFoamDecisionTreeDensity | 
|  | This is a concrete implementation of PDEFoam.  More... 
 | 
|  | 
| class | PDEFoamDensityBase | 
|  | This is an abstract class, which provides an interface for a PDEFoam density estimator.  More... 
 | 
|  | 
| class | PDEFoamDiscriminant | 
|  | This PDEFoam variant stores in every cell the discriminant.  More... 
 | 
|  | 
| class | PDEFoamDiscriminantDensity | 
|  | This is a concrete implementation of PDEFoam.  More... 
 | 
|  | 
| class | PDEFoamEvent | 
|  | This PDEFoam variant stores in every cell the sum of event weights and the sum of the squared event weights.  More... 
 | 
|  | 
| class | PDEFoamEventDensity | 
|  | This is a concrete implementation of PDEFoam.  More... 
 | 
|  | 
| class | PDEFoamKernelBase | 
|  | This class is the abstract kernel interface for PDEFoam.  More... 
 | 
|  | 
| class | PDEFoamKernelGauss | 
|  | This PDEFoam kernel estimates a cell value for a given event by weighting all cell values with a gauss function.  More... 
 | 
|  | 
| class | PDEFoamKernelLinN | 
|  | This PDEFoam kernel estimates a cell value for a given event by weighting with cell values of the nearest neighbor cells.  More... 
 | 
|  | 
| class | PDEFoamKernelTrivial | 
|  | This class is a trivial PDEFoam kernel estimator.  More... 
 | 
|  | 
| class | PDEFoamMultiTarget | 
|  | This PDEFoam variant is used to estimate multiple targets by creating an event density foam (PDEFoamEvent), which has dimension:  More... 
 | 
|  | 
| class | PDEFoamTarget | 
|  | This PDEFoam variant stores in every cell the average target fTarget (see the Constructor) as well as the statistical error on the target fTarget.  More... 
 | 
|  | 
| class | PDEFoamTargetDensity | 
|  | This is a concrete implementation of PDEFoam.  More... 
 | 
|  | 
| class | PDEFoamVect | 
|  | 
| class | PDF | 
|  | PDF wrapper for histograms; uses user-defined spline interpolation.  More... 
 | 
|  | 
| class | PruningInfo | 
|  | 
| class | PyMethodBase | 
|  | 
| class | QuickMVAProbEstimator | 
|  | 
| class | RandomGenerator | 
|  | 
| class | Rank | 
|  | 
| class | Ranking | 
|  | Ranking for variables in method (implementation)  More... 
 | 
|  | 
| class | Reader | 
|  | The Reader class serves to use the MVAs in a specific analysis context.  More... 
 | 
|  | 
| class | RegressionVariance | 
|  | Calculate the "SeparationGain" for Regression analysis separation criteria used in various training algorithms.  More... 
 | 
|  | 
| class | Results | 
|  | Class that is the base-class for a vector of result.  More... 
 | 
|  | 
| class | ResultsClassification | 
|  | Class that is the base-class for a vector of result.  More... 
 | 
|  | 
| class | ResultsMulticlass | 
|  | Class which takes the results of a multiclass classification.  More... 
 | 
|  | 
| class | ResultsRegression | 
|  | Class that is the base-class for a vector of result.  More... 
 | 
|  | 
| class | RMethodBase | 
|  | 
| class | ROCCalc | 
|  | 
| class | ROCCurve | 
|  | 
| class | RootFinder | 
|  | Root finding using Brents algorithm (translated from CERNLIB function RZERO)  More... 
 | 
|  | 
| class | Rule | 
|  | Implementation of a rule.  More... 
 | 
|  | 
| class | RuleCut | 
|  | A class describing a 'rule cut'.  More... 
 | 
|  | 
| class | RuleEnsemble | 
|  | 
| class | RuleFit | 
|  | A class implementing various fits of rule ensembles.  More... 
 | 
|  | 
| class | RuleFitAPI | 
|  | J Friedman's RuleFit method.  More... 
 | 
|  | 
| class | RuleFitParams | 
|  | A class doing the actual fitting of a linear model using rules as base functions.  More... 
 | 
|  | 
| class | SdivSqrtSplusB | 
|  | Implementation of the SdivSqrtSplusB as separation criterion.  More... 
 | 
|  | 
| class | SeparationBase | 
|  | An interface to calculate the "SeparationGain" for different separation criteria used in various training algorithms.  More... 
 | 
|  | 
| class | SimulatedAnnealing | 
|  | Base implementation of simulated annealing fitting procedure.  More... 
 | 
|  | 
| class | SimulatedAnnealingFitter | 
|  | Fitter using a Simulated Annealing Algorithm.  More... 
 | 
|  | 
| class | StatDialogBDT | 
|  | 
| class | StatDialogBDTReg | 
|  | 
| class | StatDialogMVAEffs | 
|  | 
| class | SVEvent | 
|  | Event class for Support Vector Machine.  More... 
 | 
|  | 
| class | SVKernelFunction | 
|  | Kernel for Support Vector Machine.  More... 
 | 
|  | 
| class | SVKernelMatrix | 
|  | Kernel matrix for Support Vector Machine.  More... 
 | 
|  | 
| class | SVWorkingSet | 
|  | Working class for Support Vector Machine.  More... 
 | 
|  | 
| class | TActivation | 
|  | Interface for TNeuron activation function classes.  More... 
 | 
|  | 
| class | TActivationChooser | 
|  | Class for easily choosing activation functions.  More... 
 | 
|  | 
| class | TActivationIdentity | 
|  | Identity activation function for TNeuron.  More... 
 | 
|  | 
| class | TActivationRadial | 
|  | Radial basis activation function for ANN.  More... 
 | 
|  | 
| class | TActivationReLU | 
|  | Rectified Linear Unit activation function for TNeuron.  More... 
 | 
|  | 
| class | TActivationSigmoid | 
|  | Sigmoid activation function for TNeuron.  More... 
 | 
|  | 
| class | TActivationTanh | 
|  | Tanh activation function for ANN.  More... 
 | 
|  | 
| class | Timer | 
|  | Timing information for training and evaluation of MVA methods.  More... 
 | 
|  | 
| class | TMVAGaussPair | 
|  | 
| struct | TMVAGUI | 
|  | 
| class | TNeuron | 
|  | Neuron class used by TMVA artificial neural network methods.  More... 
 | 
|  | 
| class | TNeuronInput | 
|  | Interface for TNeuron input calculation classes.  More... 
 | 
|  | 
| class | TNeuronInputAbs | 
|  | TNeuron input calculator – calculates the sum of the absolute values of the weighted inputs.  More... 
 | 
|  | 
| class | TNeuronInputChooser | 
|  | Class for easily choosing neuron input functions.  More... 
 | 
|  | 
| class | TNeuronInputSqSum | 
|  | TNeuron input calculator – calculates the squared weighted sum of inputs.  More... 
 | 
|  | 
| class | TNeuronInputSum | 
|  | TNeuron input calculator – calculates the weighted sum of inputs.  More... 
 | 
|  | 
| class | Tools | 
|  | Global auxiliary applications and data treatment routines.  More... 
 | 
|  | 
| class | TrainingHistory | 
|  | Tracking data from training.  More... 
 | 
|  | 
| class | TransformationHandler | 
|  | Class that contains all the data information.  More... 
 | 
|  | 
| class | TreeInfo | 
|  | 
| class | TSpline1 | 
|  | Linear interpolation of TGraph.  More... 
 | 
|  | 
| class | TSpline2 | 
|  | Quadratic interpolation of TGraph.  More... 
 | 
|  | 
| class | TSynapse | 
|  | Synapse class used by TMVA artificial neural network methods.  More... 
 | 
|  | 
| struct | TTrainingSettings | 
|  | All of the options that can be specified in the training string.  More... 
 | 
|  | 
| class | Types | 
|  | Singleton class for Global types used by TMVA.  More... 
 | 
|  | 
| class | VariableDecorrTransform | 
|  | Linear interpolation class.  More... 
 | 
|  | 
| class | VariableGaussTransform | 
|  | Gaussian Transformation of input variables.  More... 
 | 
|  | 
| class | VariableIdentityTransform | 
|  | Linear interpolation class.  More... 
 | 
|  | 
| class | VariableImportance | 
|  | 
| class | VariableImportanceResult | 
|  | 
| class | VariableInfo | 
|  | Class for type info of MVA input variable.  More... 
 | 
|  | 
| class | VariableNormalizeTransform | 
|  | Linear interpolation class.  More... 
 | 
|  | 
| class | VariablePCATransform | 
|  | Linear interpolation class.  More... 
 | 
|  | 
| class | VariableRearrangeTransform | 
|  | Rearrangement of input variables.  More... 
 | 
|  | 
| class | VariableTransformBase | 
|  | Linear interpolation class.  More... 
 | 
|  | 
| class | VarTransformHandler | 
|  | 
| class | Volume | 
|  | Volume for BinarySearchTree.  More... 
 | 
|  | 
|  | 
| void | ActionButton (TControlBar *cbar, const TString &title, const TString ¯o, const TString &comment, const TString &buttonType, TString requiredKey="") | 
|  | 
| void | annconvergencetest (TString dataset, TDirectory *lhdir) | 
|  | 
| void | annconvergencetest (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) | 
|  | 
| void | BDT (TString dataset, const TString &fin="TMVA.root") | 
|  | 
| void | BDT (TString dataset, Int_t itree, TString wfile, TString methName="BDT", Bool_t useTMVAStyle=kTRUE) | 
|  | 
| void | BDT_DeleteTBar (int i) | 
|  | 
| void | BDT_Reg (TString dataset, const TString &fin="TMVAReg.root") | 
|  | 
| void | BDT_Reg (TString dataset, Int_t itree, TString wfile="", TString methName="BDT", Bool_t useTMVAStyle=kTRUE) | 
|  | 
| void | bdtcontrolplots (TString dataset, TDirectory *) | 
|  | 
| void | BDTControlPlots (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) | 
|  | 
| void | BDTReg_DeleteTBar (int i) | 
|  | 
| void | boostcontrolplots (TString dataset, TDirectory *boostdir) | 
|  | 
| void | BoostControlPlots (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) | 
|  | 
| void | compareanapp (TString finAn="TMVA.root", TString finApp="TMVApp.root", HistType htype=kMVAType, bool useTMVAStyle=kTRUE) | 
|  | 
| void | correlations (TString dataset, TString fin="TMVA.root", Bool_t isRegression=kFALSE, Bool_t greyScale=kFALSE, Bool_t useTMVAStyle=kTRUE) | 
|  | 
| void | correlationscatters (TString dataset, TString fin, TString var="var3", TString dirName_="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) | 
|  | 
| void | correlationscattersMultiClass (TString dataset, TString fin="TMVA.root", TString var="var3", TString dirName_="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) | 
|  | 
| void | correlationsMultiClass (TString dataset, TString fin="TMVA.root", Bool_t isRegression=kFALSE, Bool_t greyScale=kFALSE, Bool_t useTMVAStyle=kTRUE) | 
|  | 
| void | CorrGui (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE) | 
|  | 
| void | CorrGui_DeleteTBar () | 
|  | 
| void | CorrGuiMultiClass (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE) | 
|  | 
| void | CorrGuiMultiClass_DeleteTBar () | 
|  | 
| void | CreateVariableTransforms (const TString &trafoDefinition, TMVA::DataSetInfo &dataInfo, TMVA::TransformationHandler &transformationHandler, TMVA::MsgLogger &log) | 
|  | 
| void | DataLoaderCopy (TMVA::DataLoader *des, TMVA::DataLoader *src) | 
|  | 
| template<class T > | 
| DeleteFunctor_t< const T > | DeleteFunctor () | 
|  | 
| void | deviations (TString dataset, TString fin="TMVAReg.root", HistType htype=kMVAType, Bool_t showTarget=kTRUE, Bool_t useTMVAStyle=kTRUE) | 
|  | 
| void | draw_activation (TCanvas *c, Double_t cx, Double_t cy, Double_t radx, Double_t rady, Int_t whichActivation) | 
|  | 
| void | draw_input_labels (TString dataset, Int_t nInputs, Double_t *cy, Double_t rad, Double_t layerWidth) | 
|  | 
| void | draw_layer (TString dataset, TCanvas *c, TH2F *h, Int_t iHist, Int_t nLayers, Double_t maxWeight) | 
|  | 
| void | draw_layer_labels (Int_t nLayers) | 
|  | 
| void | draw_network (TString dataset, TFile *f, TDirectory *d, const TString &hName="weights_hist", Bool_t movieMode=kFALSE, const TString &epoch="") | 
|  | 
| void | draw_synapse (Double_t cx1, Double_t cy1, Double_t cx2, Double_t cy2, Double_t rad1, Double_t rad2, Double_t weightNormed) | 
|  | 
| void | DrawCell (TMVA::PDEFoamCell *cell, TMVA::PDEFoam *foam, Double_t x, Double_t y, Double_t xscale, Double_t yscale) | 
|  | 
| void | DrawMLPoutputMovie (TString dataset, TFile *file, const TString &methodType, const TString &methodTitle) | 
|  | 
| void | DrawNetworkMovie (TString dataset, TFile *file, const TString &methodType, const TString &methodTitle) | 
|  | 
| void | efficiencies (TString dataset, TString fin="TMVA.root", Int_t type=2, Bool_t useTMVAStyle=kTRUE) | 
|  | 
| void | efficienciesMulticlass1vs1 (TString dataset, TString fin) | 
|  | 
| void | efficienciesMulticlass1vsRest (TString dataset, TString filename_input="TMVAMulticlass.root", EEfficiencyPlotType plotType=EEfficiencyPlotType::kRejBvsEffS, Bool_t useTMVAStyle=kTRUE) | 
|  | 
| MsgLogger & | Endl (MsgLogger &ml) | 
|  | 
| TString | fetchValue (const std::map< TString, TString > &keyValueMap, TString key) | 
|  | 
| template<> | 
| bool | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, bool defaultValue) | 
|  | 
| template<> | 
| double | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, double defaultValue) | 
|  | 
| template<> | 
| int | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, int defaultValue) | 
|  | 
| template<> | 
| std::vector< double > | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, std::vector< double > defaultValue) | 
|  | 
| template<typename T > | 
| T | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, T defaultValue) | 
|  | 
| template<> | 
| TString | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, TString defaultValue) | 
|  | 
| TString | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key) | 
|  | 
| template<> | 
| bool | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, bool defaultValue) | 
|  | 
| template<> | 
| double | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, double defaultValue) | 
|  | 
| template<> | 
| int | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, int defaultValue) | 
|  | 
| template<> | 
| std::vector< double > | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, std::vector< double > defaultValue) | 
|  | 
| template<typename T > | 
| T | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, T defaultValue) | 
|  | 
| template<> | 
| TString | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, TString defaultValue) | 
|  | 
| Config & | gConfig () | 
|  | 
| TString * | get_var_names (TString dataset, Int_t nVars) | 
|  | 
| Int_t | getBkgColorF () | 
|  | 
| Int_t | getBkgColorT () | 
|  | 
| std::vector< TString > | getclassnames (TString dataset, TString fin) | 
|  | 
| Int_t | getIntColorF () | 
|  | 
| Int_t | getIntColorT () | 
|  | 
| TList * | GetKeyList (const TString &pattern) | 
|  | 
| roccurvelist_t | getRocCurves (TDirectory *binDir, TString methodPrefix, TString graphNameRef) | 
|  | 
| Int_t | getSigColorF () | 
|  | 
| Int_t | getSigColorT () | 
|  | 
| Tools & | gTools () | 
|  | 
| Int_t | LargestCommonDivider (Int_t a, Int_t b) | 
|  | 
| void | likelihoodrefs (TString dataset, TDirectory *lhdir) | 
|  | 
| void | likelihoodrefs (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) | 
|  | 
| void | MovieMaker (TString dataset, TString methodType="Method_MLP", TString methodTitle="MLP") | 
|  | 
| void | MultiClassActionButton (TControlBar *cbar, const TString &title, const TString ¯o, const TString &comment, const TString &buttonType, TString requiredKey="") | 
|  | 
| TList * | MultiClassGetKeyList (const TString &pattern) | 
|  | 
| void | mvaeffs (TString dataset, TString fin="TMVA.root", Float_t nSignal=1000, Float_t nBackground=1000, Bool_t useTMVAStyle=kTRUE, TString formula="S/sqrt(S+B)") | 
|  | 
| void | mvas (TString dataset, TString fin="TMVA.root", HistType htype=kMVAType, Bool_t useTMVAStyle=kTRUE) | 
|  | 
| void | mvasMulticlass (TString dataset, TString fin="TMVAMulticlass.root", HistType htype=kMVAType, Bool_t useTMVAStyle=kTRUE) | 
|  | 
| void | mvaweights (TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) | 
|  | 
| void | network (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) | 
|  | 
| template<typename F > | 
| null_t< F > | null () | 
|  | 
| Bool_t | operator< (const GeneticGenes &, const GeneticGenes &) | 
|  | 
| std::ostream & | operator<< (std::ostream &os, const BinaryTree &tree) | 
|  | 
| std::ostream & | operator<< (std::ostream &os, const Event &event) | 
|  | 
| std::ostream & | operator<< (std::ostream &os, const Node &node) | 
|  | 
| std::ostream & | operator<< (std::ostream &os, const Node *node) | 
|  | 
| std::ostream & | operator<< (std::ostream &os, const PDF &tree) | 
|  | 
| std::ostream & | operator<< (std::ostream &os, const Rule &rule) | 
|  | 
| std::ostream & | operator<< (std::ostream &os, const RuleEnsemble &event) | 
|  | 
| std::istream & | operator>> (std::istream &istr, BinaryTree &tree) | 
|  | 
| std::istream & | operator>> (std::istream &istr, PDF &tree) | 
|  | 
| void | paracoor (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) | 
|  | 
| void | Plot (TString fileName, TMVA::ECellValue cv, TString cv_long, bool useTMVAStyle=kTRUE) | 
|  | 
| void | Plot1DimFoams (TList &foam_list, TMVA::ECellValue cell_value, const TString &cell_value_description, TMVA::PDEFoamKernelBase *kernel) | 
|  | 
| void | plot_efficiencies (TString dataset, TFile *file, Int_t type=2, TDirectory *BinDir=nullptr) | 
|  | 
| void | plot_training_history (TString dataset, TFile *file, TDirectory *BinDir=nullptr) | 
|  | 
| void | PlotCellTree (TString fileName, TString cv_long, bool useTMVAStyle=kTRUE) | 
|  | 
| void | plotEfficienciesMulticlass (roccurvelist_t rocCurves, classcanvasmap_t classCanvasMap) | 
|  | 
| void | plotEfficienciesMulticlass1vs1 (TString dataset, TString fin, TString baseClassname) | 
|  | 
| void | plotEfficienciesMulticlass1vsRest (TString dataset, EEfficiencyPlotType plotType=EEfficiencyPlotType::kRejBvsEffS, TString filename_input="TMVAMulticlass.root") | 
|  | 
| void | PlotFoams (TString fileName="weights/TMVAClassification_PDEFoam.weights_foams.root", bool useTMVAStyle=kTRUE) | 
|  | 
| void | PlotNDimFoams (TList &foam_list, TMVA::ECellValue cell_value, const TString &cell_value_description, TMVA::PDEFoamKernelBase *kernel) | 
|  | 
| void | probas (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) | 
|  | 
| TString | Python_Executable () | 
|  | Function to find current Python executable used by ROOT If "Python3" is installed, return "python3". 
 | 
|  | 
| void | RegGuiActionButton (TControlBar *cbar, const TString &title, const TString ¯o, const TString &comment, const TString &buttonType, TString requiredKey="") | 
|  | 
| TList * | RegGuiGetKeyList (const TString &pattern) | 
|  | 
| void | regression_averagedevs (TString dataset, TString fin, Int_t Nevt=-1, Bool_t useTMVAStyle=kTRUE) | 
|  | 
| void | rulevis (TString fin="TMVA.root", TMVAGlob::TypeOfPlot type=TMVAGlob::kNorm, bool useTMVAStyle=kTRUE) | 
|  | 
| void | rulevisCorr (TDirectory *rfdir, TDirectory *vardir, TDirectory *corrdir, TMVAGlob::TypeOfPlot type) | 
|  | 
| void | rulevisCorr (TString fin="TMVA.root", TMVAGlob::TypeOfPlot type=TMVAGlob::kNorm, bool useTMVAStyle=kTRUE) | 
|  | 
| void | rulevisHists (TDirectory *rfdir, TDirectory *vardir, TDirectory *corrdir, TMVAGlob::TypeOfPlot type) | 
|  | 
| void | rulevisHists (TString fin="TMVA.root", TMVAGlob::TypeOfPlot type=TMVAGlob::kNorm, bool useTMVAStyle=kTRUE) | 
|  | 
| void | TMVAGui (const char *fName="TMVA.root", TString dataset="") | 
|  | 
| void | TMVAMultiClassGui (const char *fName="TMVAMulticlass.root", TString dataset="") | 
|  | 
| void | TMVARegGui (const char *fName="TMVAReg.root", TString dataset="") | 
|  | 
| void | training_history (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) | 
|  | 
| void | variables (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variables", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) | 
|  | 
| void | variablesMultiClass (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variables", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) | 
|  | 
create variable transformations