22#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION 
   23#include <numpy/arrayobject.h> 
   71   fMinWeightFractionLeaf(0),
 
   72   fMaxFeatures(
"'sqrt'"),
 
   73   fMaxLeafNodes(
"None"),
 
 
   92   fMinWeightFractionLeaf(0),
 
   93   fMaxFeatures(
"'sqrt'"),
 
   94   fMaxLeafNodes(
"None"),
 
 
  126      The function to measure the quality of a split. Supported criteria are \ 
  127      'gini' for the Gini impurity and 'entropy' for the information gain. \ 
  128      Note: this parameter is tree-specific.");
 
  131      The maximum depth of the tree. If None, then nodes are expanded until \ 
  132      all leaves are pure or until all leaves contain less than \ 
  133      min_samples_split samples. \ 
  134      Ignored if ``max_leaf_nodes`` is not None.");
 
  137      The minimum number of samples required to split an internal node.");
 
  140      The minimum number of samples in newly created leaves.  A split is \ 
  141      discarded if after the split, one of the leaves would contain less then \ 
  142      ``min_samples_leaf`` samples.");
 
  144      The minimum weighted fraction of the input samples required to be at a \ 
  149      Grow trees with ``max_leaf_nodes`` in best-first fashion.\ 
  150      Best nodes are defined as relative reduction in impurity.\ 
  151      If None then unlimited number of leaf nodes.\ 
  152      If not None then ``max_depth`` will be ignored.");
 
  155      Whether bootstrap samples are used when building trees.");
 
  158      the generalization error.");
 
  161      The number of jobs to run in parallel for both `fit` and `predict`. \ 
  162      If -1, then the number of jobs is set to the number of cores.");
 
  165      If int, random_state is the seed used by the random number generator;\ 
  166      If RandomState instance, random_state is the random number generator;\ 
  167      If None, the random number generator is the RandomState instance used\ 
  171      Controls the verbosity of the tree building process.");
 
  174      When set to ``True``, reuse the solution of the previous call to fit\ 
  175      and add more estimators to the ensemble, otherwise, just fit a whole\ 
  179      Weights associated with classes in the form ``{class_label: weight}``.\ 
  180      If not given, all classes are supposed to have weight one. For\ 
  181      multi-output problems, a list of dicts can be provided in the same\ 
  182      order as the columns of y.\ 
  183      The \"auto\" mode uses the values of y to automatically adjust\ 
  184      weights inversely proportional to class frequencies in the input data.\ 
  185      The \"subsample\" mode is the same as \"auto\" except that weights are\ 
  186      computed based on the bootstrap sample for every tree grown.\ 
  187      For multi-output, the weights of each column of y will be multiplied.\ 
  188      Note that these weights will be multiplied with sample_weight (passed\ 
  189      through the fit method) if sample_weight is specified.");
 
  192      "Store trained classifier in this file");
 
 
  200      Log() << kFATAL << 
" NEstimators <=0... that does not work !! " << 
Endl;
 
  207            << 
" The options are `gini` or `entropy`." << 
Endl;
 
  216            << 
" The options are None or integer." << 
Endl;
 
  220      Log() << kFATAL << 
" MinSamplesSplit < 0... that does not work !! " << 
Endl;
 
  226      Log() << kFATAL << 
" MinSamplesLeaf < 0... that does not work !! " << 
Endl;
 
  232      Log() << kERROR << 
" MinWeightFractionLeaf < 0... that does not work !! " << 
Endl;
 
  246            << 
"int, float, string or None, optional (default='auto')" 
  247            << 
"The number of features to consider when looking for the best split:" 
  248            << 
"If int, then consider `max_features` features at each split." 
  249            << 
"If float, then `max_features` is a percentage and" 
  250            << 
"`int(max_features * n_features)` features are considered at each split." 
  251            << 
"If 'auto', then `max_features=sqrt(n_features)`." 
  252            << 
"If 'sqrt', then `max_features=sqrt(n_features)`." 
  253            << 
"If 'log2', then `max_features=log2(n_features)`." 
  254            << 
"If None, then `max_features=n_features`." << 
Endl;
 
  260            << 
" The options are None or integer." << 
Endl;
 
  267            << 
"If int, random_state is the seed used by the random number generator;" 
  268            << 
"If RandomState instance, random_state is the random number generator;" 
  269            << 
"If None, the random number generator is the RandomState instance used by `np.random`." << 
Endl;
 
  276            << 
"dict, list of dicts, 'auto', 'subsample' or None, optional" << 
Endl;
 
  281      Log() << kFATAL << 
Form(
" NJobs = %i... that does not work !! ", 
fNjobs)
 
  282            << 
"Value has to be greater than zero." << 
Endl;
 
 
  356   PyRunString(
"classifier = sklearn.ensemble.RandomForestClassifier(bootstrap=bootstrap, class_weight=classWeight, criterion=criterion, max_depth=maxDepth, max_features=maxFeatures, max_leaf_nodes=maxLeafNodes, min_samples_leaf=minSamplesLeaf, min_samples_split=minSamplesSplit, min_weight_fraction_leaf=minWeightFractionLeaf, n_estimators=nEstimators, n_jobs=nJobs, oob_score=oobScore, random_state=randomState, verbose=verbose, warm_start=warmStart)",
 
  357      "Failed to setup classifier");
 
  361   PyRunString(
"dump = classifier.fit(trainData, trainDataClasses, trainDataWeights)", 
"Failed to train classifier");
 
  366      Log() << kFATAL << 
"Can't create classifier object from RandomForestClassifier" << 
Endl;
 
 
  403            << 
" sample (" << nEvents << 
" events)" << 
Endl;
 
  426   for (
int i = 0; i < nEvents; ++i) {
 
  435            << 
"Elapsed time for evaluation of " << nEvents <<  
" events: " 
  436            << 
timer.GetElapsedTime() << 
"       " << 
Endl;
 
 
  536   if(
pRanking == 0) 
Log() << kFATAL << 
"Failed to get ranking from classifier" << 
Endl;
 
 
  555   Log() << 
"A random forest is a meta estimator that fits a number of decision" << 
Endl;
 
  556   Log() << 
"tree classifiers on various sub-samples of the dataset and use" << 
Endl;
 
  557   Log() << 
"averaging to improve the predictive accuracy and control over-fitting." << 
Endl;
 
  559   Log() << 
"Check out the scikit-learn documentation for more information." << 
Endl;
 
 
#define REGISTER_METHOD(CLASS)
for example
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
OptionBase * DeclareOptionRef(T &ref, const TString &name, const TString &desc="")
Class that contains all the data information.
UInt_t GetNClasses() const
const Event * GetEvent() const
returns event without transformations
Types::ETreeType GetCurrentType() const
Long64_t GetNEvents(Types::ETreeType type=Types::kMaxTreeType) const
Long64_t GetNTrainingEvents() const
void SetCurrentEvent(Long64_t ievt) const
const Event * GetTrainingEvent(Long64_t ievt) const
PyGILState_STATE m_GILState
virtual void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility they are hence without any...
const char * GetName() const
Bool_t IsModelPersistence() const
const TString & GetWeightFileDir() const
const TString & GetMethodName() const
DataSetInfo & DataInfo() const
virtual void TestClassification()
initialization
UInt_t GetNVariables() const
void NoErrorCalc(Double_t *const err, Double_t *const errUpper)
const TString & GetInputLabel(Int_t i) const
PyObject * pMinWeightFractionLeaf
MethodPyRandomForest(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
std::vector< Float_t > & GetMulticlassValues()
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
std::vector< Double_t > GetMvaValues(Long64_t firstEvt=0, Long64_t lastEvt=-1, Bool_t logProgress=false)
get all the MVA values for the events of the current Data type
~MethodPyRandomForest(void)
std::vector< Float_t > classValues
PyObject * pMinSamplesLeaf
TString fFilenameClassifier
void GetHelpMessage() const
std::vector< Double_t > mvaValues
Double_t GetMvaValue(Double_t *errLower=nullptr, Double_t *errUpper=nullptr)
virtual void TestClassification()
initialization
const Ranking * CreateRanking()
Double_t fMinWeightFractionLeaf
PyObject * pMinSamplesSplit
static int PyIsInitialized()
Check Python interpreter initialization status.
PyObject * Eval(TString code)
Evaluate Python code.
static void PyInitialize()
Initialize Python interpreter.
static void Serialize(TString file, PyObject *classifier)
Serialize Python object.
static Int_t UnSerialize(TString file, PyObject **obj)
Unserialize Python object.
void PyRunString(TString code, TString errorMessage="Failed to run python code", int start=256)
Execute Python code from string.
Ranking for variables in method (implementation)
virtual void AddRank(const Rank &rank)
Add a new rank take ownership of it.
Timing information for training and evaluation of MVA methods.
Singleton class for Global types used by TMVA.
@ kSignal
Never change this number - it is elsewhere assumed to be zero !
const char * Data() const
create variable transformations
MsgLogger & Endl(MsgLogger &ml)