58   asfactor(
"as.factor"),
 
   64   fType = 
"C-classification";
 
 
   87     asfactor(
"as.factor"),
 
   93   fType = 
"C-classification";
 
 
  129      Error(
"Init", 
"R's package e1071 can not be loaded.");
 
  130      Log() << kFATAL << 
" R's package e1071 can not be loaded." 
 
  138   if (
Data()->GetNTrainingEvents() == 0) 
Log() << kFATAL << 
"<Train> Data() has zero events" << 
Endl;
 
  147         << 
" Type is "  << 
fType 
  177        r << 
"save(RSVMModel,file='" + path + 
"')";
 
 
  185                                       ‘scale’ is of length 1, the value is recycled as many times \ 
  186                                       as needed.  Per default, data are scaled internally (both ‘x’\ 
  187                                       and ‘y’ variables) to zero mean and unit variance. The center \ 
  188                                       and scale values are returned and used for later predictions.");
 
  190                                     regression machine, or for novelty detection.  Depending of\ 
  191                                     whether ‘y’ is a factor or not, the default setting for\ 
  192                                     ‘type’ is ‘C-classification’ or ‘eps-regression’,\ 
  193                                     respectively, but may be overwritten by setting an explicit value.\ 
  195                                      - ‘C-classification’\ 
  196                                      - ‘nu-classification’\ 
  197                                      - ‘one-classification’ (for novelty detection)\ 
  201                                        consider changing some of the following parameters, depending on the kernel type.\ 
  203                                        polynomial: (gamma*u'*v + coef0)^degree\ 
  204                                        radial basis: exp(-gamma*|u-v|^2)\ 
  205                                        sigmoid: tanh(gamma*u'*v + coef0)");
 
  207   DeclareOptionRef(
fGamma, 
"Gamma", 
"parameter needed for all kernels except ‘linear’ (default:1/(data dimension))");
 
  208   DeclareOptionRef(
fCoef0, 
"Coef0", 
"parameter needed for kernels of type ‘polynomial’ and ‘sigmoid’ (default: 0)");
 
  209   DeclareOptionRef(
fCost, 
"Cost", 
"cost of constraints violation (default: 1)-it is the ‘C’-constant of the regularization term in the Lagrange formulation.");
 
  210   DeclareOptionRef(
fNu, 
"Nu", 
"parameter needed for ‘nu-classification’, ‘nu-regression’,and ‘one-classification’");
 
  215   DeclareOptionRef(
fCross, 
"Cross", 
"if a integer value k>0 is specified, a k-fold cross validation on the training data is performed to assess the quality of the model: the accuracy rate for classification and the Mean Squared Error for regression");
 
  217   DeclareOptionRef(
fFitted, 
"Fitted", 
"logical indicating whether the fitted values should be computed and included in the model or not (default: ‘TRUE’)");
 
 
  225   r[
"RMVA.RSVM.Type"] = 
fType;
 
  230   r[
"RMVA.RSVM.Cost"] = 
fCost;
 
  231   r[
"RMVA.RSVM.Nu"] = 
fNu;
 
 
  245   Log() << kINFO << 
"Testing Classification RSVM METHOD  " << 
Endl;
 
 
  259   for (
UInt_t i = 0; i < nvar; i++) {
 
 
  291   std::vector<std::vector<Float_t> > 
inputData(nvars);
 
  292   for (
UInt_t i = 0; i < nvars; i++) {
 
  293      inputData[i] =  std::vector<Float_t>(nEvents); 
 
  299      assert(nvars == 
e->GetNVariables());
 
  300      for (
UInt_t i = 0; i < nvars; i++) {
 
  308   for (
UInt_t i = 0; i < nvars; i++) {
 
  314   std::vector<Double_t> mvaValues(nEvents);
 
  320   r << 
"v2 <- attr(result, \"probabilities\") ";
 
  328      for (
int i = 0; i < nEvents; ++i)
 
  336      Log() << kINFO << 
" : Probabilities are not available. Use decision values instead !" << 
Endl;
 
  347      Log() << kINFO <<
Form(
"Dataset[%s] : ",
DataInfo().
GetName())<< 
"Elapsed time for evaluation of " << nEvents <<  
" events: " 
  348            << 
timer.GetElapsedTime() << 
"       " << 
Endl;
 
 
  359   TString path = GetWeightFileDir() +  
"/" + GetName() + 
".RData";
 
  363   r << 
"load('" + path + 
"')";
 
 
  380   Log() << 
"Decision Trees and Rule-Based Models " << 
Endl;
 
 
#define REGISTER_METHOD(CLASS)
for example
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
void Error(const char *location, const char *msgfmt,...)
Use this function in case an error occurred.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
This is a class to create DataFrames from ROOT to R.
Int_t GetNcols()
Method to get the number of columns.
static TRInterface & Instance()
static method to get an TRInterface instance reference
This is a class to get ROOT's objects from R's objects.
OptionBase * DeclareOptionRef(T &ref, const TString &name, const TString &desc="")
Class that contains all the data information.
UInt_t GetNVariables() const
std::vector< TString > GetListOfVariables() const
returns list of variables
Long64_t GetNEvtSigTrain()
return number of signal training events in dataset
const Event * GetEvent() const
returns event without transformations
Types::ETreeType GetCurrentType() const
Long64_t GetNEvents(Types::ETreeType type=Types::kMaxTreeType) const
UInt_t GetNVariables() const
access the number of variables through the datasetinfo
void SetCurrentEvent(Long64_t ievt) const
Long64_t GetNEvtBkgdTrain()
return number of background training events in dataset
const char * GetName() const
Bool_t IsModelPersistence() const
const TString & GetWeightFileDir() const
const TString & GetMethodName() const
const Event * GetEvent() const
DataSetInfo & DataInfo() const
virtual void TestClassification()
initialization
void ReadStateFromFile()
Function to write options and weights to file.
void NoErrorCalc(Double_t *const err, Double_t *const errUpper)
virtual std::vector< Double_t > GetMvaValues(Long64_t firstEvt=0, Long64_t lastEvt=-1, Bool_t logProgress=false)
get all the MVA values for the events of the current Data type
virtual void TestClassification()
initialization
ROOT::R::TRFunctionImport asfactor
static Bool_t IsModuleLoaded
Double_t GetMvaValue(Double_t *errLower=nullptr, Double_t *errUpper=nullptr)
ROOT::R::TRObject * fModel
MethodRSVM(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
ROOT::R::TRFunctionImport svm
void GetHelpMessage() const
ROOT::R::TRFunctionImport predict
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
std::vector< std::string > fFactorTrain
ROOT::R::TRDataFrame fDfTrain
Timing information for training and evaluation of MVA methods.
Singleton class for Global types used by TMVA.
const Rcpp::internal::NamedPlaceHolder & Label
create variable transformations
MsgLogger & Endl(MsgLogger &ml)