import torch
from torch import nn
 
from ROOT import TMVA, TFile, TCut, gROOT
from subprocess import call
 
 
 
        '!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=Regression')
 
 
 
 
    if name != 'fvalue':
 
        'nTrain_Regression=4000:SplitMode=Random:NormMode=NumEvents:!V')
 
 
 
 
 
 
 
def train(model, train_loader, val_loader, num_epochs, batch_size, optimizer, criterion, save_best, scheduler):
    schedule, schedulerSteps = scheduler
    best_val = None
 
    for epoch 
in range(num_epochs):
 
        
        
        running_train_loss = 0.0
        running_val_loss = 0.0
            output = model(X)
            train_loss = criterion(output, y)
 
            
            if i % 32 == 31:    
                print(
"[{}, {}] train loss: {:.3f}".
format(epoch+1, i+1, running_train_loss / 32))
                running_train_loss = 0.0
 
        if schedule:
            schedule(optimizer, epoch, schedulerSteps)
 
 
        
        
                output = model(X)
                val_loss = criterion(output, y)
 
            curr_val = running_val_loss / 
len(val_loader)
            if save_best:
               if best_val==None:
                   best_val = curr_val
               best_val = 
save_best(model, curr_val, best_val)
 
            
            print(
"[{}] val loss: {:.3f}".
format(epoch+1, curr_val))
            running_val_loss = 0.0
 
    print(
"Finished Training on {} Epochs!".
format(epoch+1))
 
    return model
 
 
def predict(model, test_X, batch_size=32):
    
 
 
    predictions = []
            X = data[0]
            outputs = model(X)
 
 
 
load_model_custom_objects = {"optimizer": optimizer, "criterion": loss, "train_func": train, "predict_func": predict}
 
 
print(m)
 
 
        'H:!V:VarTransform=D,G:FilenameModel=modelRegression.pt:FilenameTrainedModel=trainedModelRegression.pt:NumEpochs=20:BatchSize=32')
        '!H:!V:VarTransform=D,G:NTrees=1000:BoostType=Grad:Shrinkage=0.1:UseBaggedBoost:BaggedSampleFraction=0.5:nCuts=20:MaxDepth=4')
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
A specialized string object used for TTree selections.
This is the main MVA steering class.