******************************************************************************
*Tree    :sig_tree  : tree                                                   *
*Entries :    10000 : Total =         1177229 bytes  File  Size =     785298 *
*        :          : Tree compression factor =   1.48                       *
******************************************************************************
*Br    0 :Type      : Type/F                                                 *
*Entries :    10000 : Total  Size=      40556 bytes  File Size  =        307 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression= 130.54     *
*............................................................................*
*Br    1 :lepton_pT : lepton_pT/F                                            *
*Entries :    10000 : Total  Size=      40581 bytes  File Size  =      30464 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.32     *
*............................................................................*
*Br    2 :lepton_eta : lepton_eta/F                                          *
*Entries :    10000 : Total  Size=      40586 bytes  File Size  =      28650 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.40     *
*............................................................................*
*Br    3 :lepton_phi : lepton_phi/F                                          *
*Entries :    10000 : Total  Size=      40586 bytes  File Size  =      30508 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.31     *
*............................................................................*
*Br    4 :missing_energy_magnitude : missing_energy_magnitude/F              *
*Entries :    10000 : Total  Size=      40656 bytes  File Size  =      35749 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.12     *
*............................................................................*
*Br    5 :missing_energy_phi : missing_energy_phi/F                          *
*Entries :    10000 : Total  Size=      40626 bytes  File Size  =      36766 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.09     *
*............................................................................*
*Br    6 :jet1_pt   : jet1_pt/F                                              *
*Entries :    10000 : Total  Size=      40571 bytes  File Size  =      32298 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.24     *
*............................................................................*
*Br    7 :jet1_eta  : jet1_eta/F                                             *
*Entries :    10000 : Total  Size=      40576 bytes  File Size  =      28467 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.41     *
*............................................................................*
*Br    8 :jet1_phi  : jet1_phi/F                                             *
*Entries :    10000 : Total  Size=      40576 bytes  File Size  =      30399 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.32     *
*............................................................................*
*Br    9 :jet1_b-tag : jet1_b-tag/F                                          *
*Entries :    10000 : Total  Size=      40586 bytes  File Size  =       5087 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   7.88     *
*............................................................................*
*Br   10 :jet2_pt   : jet2_pt/F                                              *
*Entries :    10000 : Total  Size=      40571 bytes  File Size  =      31561 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.27     *
*............................................................................*
*Br   11 :jet2_eta  : jet2_eta/F                                             *
*Entries :    10000 : Total  Size=      40576 bytes  File Size  =      28616 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.40     *
*............................................................................*
*Br   12 :jet2_phi  : jet2_phi/F                                             *
*Entries :    10000 : Total  Size=      40576 bytes  File Size  =      30547 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.31     *
*............................................................................*
*Br   13 :jet2_b-tag : jet2_b-tag/F                                          *
*Entries :    10000 : Total  Size=      40586 bytes  File Size  =       5031 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   7.97     *
*............................................................................*
*Br   14 :jet3_pt   : jet3_pt/F                                              *
*Entries :    10000 : Total  Size=      40571 bytes  File Size  =      30642 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.31     *
*............................................................................*
*Br   15 :jet3_eta  : jet3_eta/F                                             *
*Entries :    10000 : Total  Size=      40576 bytes  File Size  =      28955 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.38     *
*............................................................................*
*Br   16 :jet3_phi  : jet3_phi/F                                             *
*Entries :    10000 : Total  Size=      40576 bytes  File Size  =      30433 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.32     *
*............................................................................*
*Br   17 :jet3_b-tag : jet3_b-tag/F                                          *
*Entries :    10000 : Total  Size=      40586 bytes  File Size  =       4879 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   8.22     *
*............................................................................*
*Br   18 :jet4_pt   : jet4_pt/F                                              *
*Entries :    10000 : Total  Size=      40571 bytes  File Size  =      29189 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.37     *
*............................................................................*
*Br   19 :jet4_eta  : jet4_eta/F                                             *
*Entries :    10000 : Total  Size=      40576 bytes  File Size  =      29311 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.37     *
*............................................................................*
*Br   20 :jet4_phi  : jet4_phi/F                                             *
*Entries :    10000 : Total  Size=      40576 bytes  File Size  =      30525 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.31     *
*............................................................................*
*Br   21 :jet4_b-tag : jet4_b-tag/F                                          *
*Entries :    10000 : Total  Size=      40586 bytes  File Size  =       4725 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   8.48     *
*............................................................................*
*Br   22 :m_jj      : m_jj/F                                                 *
*Entries :    10000 : Total  Size=      40556 bytes  File Size  =      34991 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.15     *
*............................................................................*
*Br   23 :m_jjj     : m_jjj/F                                                *
*Entries :    10000 : Total  Size=      40561 bytes  File Size  =      34460 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.16     *
*............................................................................*
*Br   24 :m_lv      : m_lv/F                                                 *
*Entries :    10000 : Total  Size=      40556 bytes  File Size  =      32232 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.24     *
*............................................................................*
*Br   25 :m_jlv     : m_jlv/F                                                *
*Entries :    10000 : Total  Size=      40561 bytes  File Size  =      34598 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.16     *
*............................................................................*
*Br   26 :m_bb      : m_bb/F                                                 *
*Entries :    10000 : Total  Size=      40556 bytes  File Size  =      35012 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.14     *
*............................................................................*
*Br   27 :m_wbb     : m_wbb/F                                                *
*Entries :    10000 : Total  Size=      40561 bytes  File Size  =      34493 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.16     *
*............................................................................*
*Br   28 :m_wwbb    : m_wwbb/F                                               *
*Entries :    10000 : Total  Size=      40566 bytes  File Size  =      34410 *
*Baskets :        1 : Basket Size=    1500672 bytes  Compression=   1.16     *
*............................................................................*
DataSetInfo              : [dataset] : Added class "Signal"
                         : Add Tree sig_tree of type Signal with 10000 events
DataSetInfo              : [dataset] : Added class "Background"
                         : Add Tree bkg_tree of type Background with 10000 events
Factory                  : Booking method: ␛[1mLikelihood␛[0m
                         : 
Factory                  : Booking method: ␛[1mFisher␛[0m
                         : 
Factory                  : Booking method: ␛[1mBDT␛[0m
                         : 
                         : Rebuilding Dataset dataset
                         : Building event vectors for type 2 Signal
                         : Dataset[dataset] :  create input formulas for tree sig_tree
                         : Building event vectors for type 2 Background
                         : Dataset[dataset] :  create input formulas for tree bkg_tree
DataSetFactory           : [dataset] : Number of events in input trees
                         : 
                         : 
                         : Number of training and testing events
                         : ---------------------------------------------------------------------------
                         : Signal     -- training events            : 7000
                         : Signal     -- testing events             : 3000
                         : Signal     -- training and testing events: 10000
                         : Background -- training events            : 7000
                         : Background -- testing events             : 3000
                         : Background -- training and testing events: 10000
                         : 
DataSetInfo              : Correlation matrix (Signal):
                         : ----------------------------------------------------------------
                         :             m_jj   m_jjj    m_lv   m_jlv    m_bb   m_wbb  m_wwbb
                         :    m_jj:  +1.000  +0.777  +0.010  +0.107  +0.036  +0.517  +0.532
                         :   m_jjj:  +0.777  +1.000  +0.006  +0.083  +0.157  +0.682  +0.669
                         :    m_lv:  +0.010  +0.006  +1.000  +0.111  -0.026  +0.011  +0.023
                         :   m_jlv:  +0.107  +0.083  +0.111  +1.000  +0.325  +0.550  +0.555
                         :    m_bb:  +0.036  +0.157  -0.026  +0.325  +1.000  +0.463  +0.347
                         :   m_wbb:  +0.517  +0.682  +0.011  +0.550  +0.463  +1.000  +0.912
                         :  m_wwbb:  +0.532  +0.669  +0.023  +0.555  +0.347  +0.912  +1.000
                         : ----------------------------------------------------------------
DataSetInfo              : Correlation matrix (Background):
                         : ----------------------------------------------------------------
                         :             m_jj   m_jjj    m_lv   m_jlv    m_bb   m_wbb  m_wwbb
                         :    m_jj:  +1.000  +0.804  +0.017  +0.125  +0.007  +0.381  +0.394
                         :   m_jjj:  +0.804  +1.000  +0.025  +0.159  +0.153  +0.535  +0.520
                         :    m_lv:  +0.017  +0.025  +1.000  +0.114  +0.042  +0.064  +0.069
                         :   m_jlv:  +0.125  +0.159  +0.114  +1.000  +0.286  +0.592  +0.542
                         :    m_bb:  +0.007  +0.153  +0.042  +0.286  +1.000  +0.623  +0.441
                         :   m_wbb:  +0.381  +0.535  +0.064  +0.592  +0.623  +1.000  +0.878
                         :  m_wwbb:  +0.394  +0.520  +0.069  +0.542  +0.441  +0.878  +1.000
                         : ----------------------------------------------------------------
DataSetFactory           : [dataset] :  
                         : 
Factory                  : Booking method: ␛[1mDNN_CPU␛[0m
                         : 
                         : Parsing option string: 
                         : ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=G:WeightInitialization=XAVIER:InputLayout=1|1|7:BatchLayout=1|128|7:Layout=DENSE|64|TANH,DENSE|64|TANH,DENSE|64|TANH,DENSE|64|TANH,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,ConvergenceSteps=10,BatchSize=128,TestRepetitions=1,MaxEpochs=20,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,ADAM_beta1=0.9,ADAM_beta2=0.999,ADAM_eps=1.E-7,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
                         : The following options are set:
                         : - By User:
                         :     <none>
                         : - Default:
                         :     Boost_num: "0" [Number of times the classifier will be boosted]
                         : Parsing option string: 
                         : ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=G:WeightInitialization=XAVIER:InputLayout=1|1|7:BatchLayout=1|128|7:Layout=DENSE|64|TANH,DENSE|64|TANH,DENSE|64|TANH,DENSE|64|TANH,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,ConvergenceSteps=10,BatchSize=128,TestRepetitions=1,MaxEpochs=20,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,ADAM_beta1=0.9,ADAM_beta2=0.999,ADAM_eps=1.E-7,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
                         : The following options are set:
                         : - By User:
                         :     V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
                         :     VarTransform: "G" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
                         :     H: "False" [Print method-specific help message]
                         :     InputLayout: "1|1|7" [The Layout of the input]
                         :     BatchLayout: "1|128|7" [The Layout of the batch]
                         :     Layout: "DENSE|64|TANH,DENSE|64|TANH,DENSE|64|TANH,DENSE|64|TANH,DENSE|1|LINEAR" [Layout of the network.]
                         :     ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
                         :     WeightInitialization: "XAVIER" [Weight initialization strategy]
                         :     Architecture: "CPU" [Which architecture to perform the training on.]
                         :     TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,ConvergenceSteps=10,BatchSize=128,TestRepetitions=1,MaxEpochs=20,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,ADAM_beta1=0.9,ADAM_beta2=0.999,ADAM_eps=1.E-7,DropConfig=0.0+0.0+0.0+0." [Defines the training strategies.]
                         : - Default:
                         :     VerbosityLevel: "Default" [Verbosity level]
                         :     CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
                         :     IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
                         :     RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
                         :     ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
DNN_CPU                  : [dataset] : Create Transformation "G" with events from all classes.
                         : 
                         : Transformation, Variable selection : 
                         : Input : variable 'm_jj' <---> Output : variable 'm_jj'
                         : Input : variable 'm_jjj' <---> Output : variable 'm_jjj'
                         : Input : variable 'm_lv' <---> Output : variable 'm_lv'
                         : Input : variable 'm_jlv' <---> Output : variable 'm_jlv'
                         : Input : variable 'm_bb' <---> Output : variable 'm_bb'
                         : Input : variable 'm_wbb' <---> Output : variable 'm_wbb'
                         : Input : variable 'm_wwbb' <---> Output : variable 'm_wwbb'
                         : Will now use the CPU architecture with BLAS and IMT support !
Factory                  : ␛[1mTrain all methods␛[0m
Factory                  : [dataset] : Create Transformation "I" with events from all classes.
                         : 
                         : Transformation, Variable selection : 
                         : Input : variable 'm_jj' <---> Output : variable 'm_jj'
                         : Input : variable 'm_jjj' <---> Output : variable 'm_jjj'
                         : Input : variable 'm_lv' <---> Output : variable 'm_lv'
                         : Input : variable 'm_jlv' <---> Output : variable 'm_jlv'
                         : Input : variable 'm_bb' <---> Output : variable 'm_bb'
                         : Input : variable 'm_wbb' <---> Output : variable 'm_wbb'
                         : Input : variable 'm_wwbb' <---> Output : variable 'm_wwbb'
TFHandler_Factory        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     m_jj:     1.0352    0.65399   [    0.14661     13.098 ]
                         :    m_jjj:     1.0218    0.36964   [    0.34201     7.3920 ]
                         :     m_lv:     1.0497    0.16065   [    0.26679     3.6823 ]
                         :    m_jlv:     1.0126    0.39935   [    0.38441     6.5831 ]
                         :     m_bb:    0.98070    0.53223   [   0.093482     7.8598 ]
                         :    m_wbb:     1.0338    0.35968   [    0.38503     4.5425 ]
                         :   m_wwbb:    0.96049    0.31009   [    0.43228     4.0728 ]
                         : -----------------------------------------------------------
                         : Ranking input variables (method unspecific)...
IdTransformation         : Ranking result (top variable is best ranked)
                         : -------------------------------
                         : Rank : Variable  : Separation
                         : -------------------------------
                         :    1 : m_bb      : 9.114e-02
                         :    2 : m_wwbb    : 4.330e-02
                         :    3 : m_wbb     : 4.241e-02
                         :    4 : m_jjj     : 2.875e-02
                         :    5 : m_jlv     : 1.905e-02
                         :    6 : m_jj      : 3.432e-03
                         :    7 : m_lv      : 2.855e-03
                         : -------------------------------
Factory                  : Train method: Likelihood for Classification
                         : 
                         : 
                         : ␛[1m================================================================␛[0m
                         : ␛[1mH e l p   f o r   M V A   m e t h o d   [ Likelihood ] :␛[0m
                         : 
                         : ␛[1m--- Short description:␛[0m
                         : 
                         : The maximum-likelihood classifier models the data with probability 
                         : density functions (PDF) reproducing the signal and background
                         : distributions of the input variables. Correlations among the 
                         : variables are ignored.
                         : 
                         : ␛[1m--- Performance optimisation:␛[0m
                         : 
                         : Required for good performance are decorrelated input variables
                         : (PCA transformation via the option "VarTransform=Decorrelate"
                         : may be tried). Irreducible non-linear correlations may be reduced
                         : by precombining strongly correlated input variables, or by simply
                         : removing one of the variables.
                         : 
                         : ␛[1m--- Performance tuning via configuration options:␛[0m
                         : 
                         : High fidelity PDF estimates are mandatory, i.e., sufficient training 
                         : statistics is required to populate the tails of the distributions
                         : It would be a surprise if the default Spline or KDE kernel parameters
                         : provide a satisfying fit to the data. The user is advised to properly
                         : tune the events per bin and smooth options in the spline cases
                         : individually per variable. If the KDE kernel is used, the adaptive
                         : Gaussian kernel may lead to artefacts, so please always also try
                         : the non-adaptive one.
                         : 
                         : All tuning parameters must be adjusted individually for each input
                         : variable!
                         : 
                         : <Suppress this message by specifying "!H" in the booking option>
                         : ␛[1m================================================================␛[0m
                         : 
                         : Filling reference histograms
                         : Building PDF out of reference histograms
                         : Elapsed time for training with 14000 events: 0.0804 sec         
Likelihood               : [dataset] : Evaluation of Likelihood on training sample (14000 events)
                         : Elapsed time for evaluation of 14000 events: 0.0109 sec       
                         : Creating xml weight file: ␛[0;36mdataset/weights/TMVA_Higgs_Classification_Likelihood.weights.xml␛[0m
                         : Creating standalone class: ␛[0;36mdataset/weights/TMVA_Higgs_Classification_Likelihood.class.C␛[0m
                         : Higgs_ClassificationOutput.root:/dataset/Method_Likelihood/Likelihood
Factory                  : Training finished
                         : 
Factory                  : Train method: Fisher for Classification
                         : 
                         : 
                         : ␛[1m================================================================␛[0m
                         : ␛[1mH e l p   f o r   M V A   m e t h o d   [ Fisher ] :␛[0m
                         : 
                         : ␛[1m--- Short description:␛[0m
                         : 
                         : Fisher discriminants select events by distinguishing the mean 
                         : values of the signal and background distributions in a trans- 
                         : formed variable space where linear correlations are removed.
                         : 
                         :    (More precisely: the "linear discriminator" determines
                         :     an axis in the (correlated) hyperspace of the input 
                         :     variables such that, when projecting the output classes 
                         :     (signal and background) upon this axis, they are pushed 
                         :     as far as possible away from each other, while events
                         :     of a same class are confined in a close vicinity. The  
                         :     linearity property of this classifier is reflected in the 
                         :     metric with which "far apart" and "close vicinity" are 
                         :     determined: the covariance matrix of the discriminating
                         :     variable space.)
                         : 
                         : ␛[1m--- Performance optimisation:␛[0m
                         : 
                         : Optimal performance for Fisher discriminants is obtained for 
                         : linearly correlated Gaussian-distributed variables. Any deviation
                         : from this ideal reduces the achievable separation power. In 
                         : particular, no discrimination at all is achieved for a variable
                         : that has the same sample mean for signal and background, even if 
                         : the shapes of the distributions are very different. Thus, Fisher 
                         : discriminants often benefit from suitable transformations of the 
                         : input variables. For example, if a variable x in [-1,1] has a 
                         : a parabolic signal distributions, and a uniform background
                         : distributions, their mean value is zero in both cases, leading 
                         : to no separation. The simple transformation x -> |x| renders this 
                         : variable powerful for the use in a Fisher discriminant.
                         : 
                         : ␛[1m--- Performance tuning via configuration options:␛[0m
                         : 
                         : <None>
                         : 
                         : <Suppress this message by specifying "!H" in the booking option>
                         : ␛[1m================================================================␛[0m
                         : 
Fisher                   : Results for Fisher coefficients:
                         : -----------------------
                         : Variable:  Coefficient:
                         : -----------------------
                         :     m_jj:       -0.051
                         :    m_jjj:       +0.187
                         :     m_lv:       +0.037
                         :    m_jlv:       +0.065
                         :     m_bb:       -0.207
                         :    m_wbb:       +0.532
                         :   m_wwbb:       -0.743
                         : (offset):       +0.125
                         : -----------------------
                         : Elapsed time for training with 14000 events: 0.00605 sec         
Fisher                   : [dataset] : Evaluation of Fisher on training sample (14000 events)
                         : Elapsed time for evaluation of 14000 events: 0.00098 sec       
                         : <CreateMVAPdfs> Separation from histogram (PDF): 0.085 (0.000)
                         : Dataset[dataset] : Evaluation of Fisher on training sample
                         : Creating xml weight file: ␛[0;36mdataset/weights/TMVA_Higgs_Classification_Fisher.weights.xml␛[0m
                         : Creating standalone class: ␛[0;36mdataset/weights/TMVA_Higgs_Classification_Fisher.class.C␛[0m
Factory                  : Training finished
                         : 
Factory                  : Train method: BDT for Classification
                         : 
BDT                      : #events: (reweighted) sig: 7000 bkg: 7000
                         : #events: (unweighted) sig: 7000 bkg: 7000
                         : Training 200 Decision Trees ... patience please
                         : Elapsed time for training with 14000 events: 0.525 sec         
BDT                      : [dataset] : Evaluation of BDT on training sample (14000 events)
                         : Elapsed time for evaluation of 14000 events: 0.0564 sec       
                         : Creating xml weight file: ␛[0;36mdataset/weights/TMVA_Higgs_Classification_BDT.weights.xml␛[0m
                         : Creating standalone class: ␛[0;36mdataset/weights/TMVA_Higgs_Classification_BDT.class.C␛[0m
                         : Higgs_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory                  : Training finished
                         : 
Factory                  : Train method: DNN_CPU for Classification
                         : 
                         : Preparing the Gaussian transformation...
TFHandler_DNN_CPU        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     m_jj:  0.0042139    0.99787   [    -3.2801     5.7307 ]
                         :    m_jjj:  0.0043508    0.99784   [    -3.2805     5.7307 ]
                         :     m_lv:  0.0051611     1.0008   [    -3.2813     5.7307 ]
                         :    m_jlv:  0.0044388    0.99830   [    -3.2803     5.7307 ]
                         :     m_bb:  0.0041864    0.99765   [    -3.2793     5.7307 ]
                         :    m_wbb:  0.0046426    0.99950   [    -3.2802     5.7307 ]
                         :   m_wwbb:  0.0044594    0.99873   [    -3.2802     5.7307 ]
                         : -----------------------------------------------------------
                         : Start of deep neural network training on CPU using MT,  nthreads = 1
                         : 
TFHandler_DNN_CPU        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     m_jj:  0.0042139    0.99787   [    -3.2801     5.7307 ]
                         :    m_jjj:  0.0043508    0.99784   [    -3.2805     5.7307 ]
                         :     m_lv:  0.0051611     1.0008   [    -3.2813     5.7307 ]
                         :    m_jlv:  0.0044388    0.99830   [    -3.2803     5.7307 ]
                         :     m_bb:  0.0041864    0.99765   [    -3.2793     5.7307 ]
                         :    m_wbb:  0.0046426    0.99950   [    -3.2802     5.7307 ]
                         :   m_wwbb:  0.0044594    0.99873   [    -3.2802     5.7307 ]
                         : -----------------------------------------------------------
                         : *****   Deep Learning Network *****
DEEP NEURAL NETWORK:   Depth = 5  Input = ( 1, 1, 7 )  Batch size = 128  Loss function = C
   Layer 0   DENSE Layer:   ( Input =     7 , Width =    64 )  Output = (  1 ,   128 ,    64 )   Activation Function = Tanh
   Layer 1   DENSE Layer:   ( Input =    64 , Width =    64 )  Output = (  1 ,   128 ,    64 )   Activation Function = Tanh
   Layer 2   DENSE Layer:   ( Input =    64 , Width =    64 )  Output = (  1 ,   128 ,    64 )   Activation Function = Tanh
   Layer 3   DENSE Layer:   ( Input =    64 , Width =    64 )  Output = (  1 ,   128 ,    64 )   Activation Function = Tanh
   Layer 4   DENSE Layer:   ( Input =    64 , Width =     1 )  Output = (  1 ,   128 ,     1 )   Activation Function = Identity
                         : Using 11200 events for training and 2800 for testing
                         : Compute initial loss  on the validation data 
                         : Training phase 1 of 1:  Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 0.842379
                         : --------------------------------------------------------------
                         :      Epoch |   Train Err.   Val. Err.  t(s)/epoch   t(s)/Loss   nEvents/s Conv. Steps
                         : --------------------------------------------------------------
                         :    Start epoch iteration ...
                         :          1 Minimum Test error found - save the configuration 
                         :          1 |     0.656312    0.628024    0.136013   0.0134859     90886.2           0
                         :          2 Minimum Test error found - save the configuration 
                         :          2 |     0.610319    0.594992    0.137034   0.0138206       90380           0
                         :          3 Minimum Test error found - save the configuration 
                         :          3 |     0.587754    0.587918    0.137008    0.013656       90278           0
                         :          4 Minimum Test error found - save the configuration 
                         :          4 |     0.580804    0.580711    0.137891   0.0145341     90274.4           0
                         :          5 |     0.573675    0.583369    0.136951   0.0137188     90365.8           1
                         :          6 Minimum Test error found - save the configuration 
                         :          6 |     0.570347    0.578231    0.140281   0.0140071     88189.5           0
                         :          7 Minimum Test error found - save the configuration 
                         :          7 |      0.56428    0.577981    0.138729   0.0138804       89196           0
                         :          8 Minimum Test error found - save the configuration 
                         :          8 |     0.560366    0.573655    0.137929   0.0137141     89650.9           0
                         :          9 |     0.559089    0.574563    0.136457   0.0134217     90510.9           1
                         :         10 |     0.557409    0.577052    0.138816    0.015425     90249.5           2
                         :         11 |     0.556713    0.577258    0.138611    0.013812     89231.7           3
                         :         12 |     0.552378    0.574036    0.137798   0.0137546     89774.9           4
                         :         13 |     0.553087    0.581924    0.137596   0.0135532     89775.5           5
                         :         14 Minimum Test error found - save the configuration 
                         :         14 |     0.551422    0.573479    0.135548   0.0135428     91274.7           0
                         :         15 |     0.548133     0.58033    0.135527   0.0137539     91448.4           1
                         :         16 |     0.547583    0.578732    0.138586   0.0135347     89051.2           2
                         :         17 |     0.548444    0.578202    0.136314   0.0137248     90840.1           3
                         :         18 |     0.544113    0.578944    0.137448    0.014024     90225.3           4
                         :         19 |     0.545359    0.586514    0.141126   0.0137395     87418.9           5
                         :         20 |     0.542031    0.582552    0.137173   0.0136212     90132.3           6
                         : 
                         : Elapsed time for training with 14000 events: 2.8 sec         
                         : Evaluate deep neural network on CPU using batches with size = 128
                         : 
DNN_CPU                  : [dataset] : Evaluation of DNN_CPU on training sample (14000 events)
                         : Elapsed time for evaluation of 14000 events: 0.0711 sec       
                         : Creating xml weight file: ␛[0;36mdataset/weights/TMVA_Higgs_Classification_DNN_CPU.weights.xml␛[0m
                         : Creating standalone class: ␛[0;36mdataset/weights/TMVA_Higgs_Classification_DNN_CPU.class.C␛[0m
Factory                  : Training finished
                         : 
                         : Ranking input variables (method specific)...
Likelihood               : Ranking result (top variable is best ranked)
                         : -------------------------------------
                         : Rank : Variable  : Delta Separation
                         : -------------------------------------
                         :    1 : m_bb      : 5.483e-02
                         :    2 : m_wbb     : 4.416e-02
                         :    3 : m_wwbb    : 4.201e-02
                         :    4 : m_jjj     : 4.949e-03
                         :    5 : m_lv      : -2.642e-03
                         :    6 : m_jj      : -5.516e-03
                         :    7 : m_jlv     : -1.042e-02
                         : -------------------------------------
Fisher                   : Ranking result (top variable is best ranked)
                         : ---------------------------------
                         : Rank : Variable  : Discr. power
                         : ---------------------------------
                         :    1 : m_bb      : 1.180e-02
                         :    2 : m_wwbb    : 7.816e-03
                         :    3 : m_wbb     : 2.085e-03
                         :    4 : m_jlv     : 5.619e-04
                         :    5 : m_jjj     : 2.327e-04
                         :    6 : m_lv      : 3.319e-05
                         :    7 : m_jj      : 1.479e-05
                         : ---------------------------------
BDT                      : Ranking result (top variable is best ranked)
                         : ----------------------------------------
                         : Rank : Variable  : Variable Importance
                         : ----------------------------------------
                         :    1 : m_bb      : 2.045e-01
                         :    2 : m_wwbb    : 1.687e-01
                         :    3 : m_jlv     : 1.638e-01
                         :    4 : m_jjj     : 1.413e-01
                         :    5 : m_wbb     : 1.356e-01
                         :    6 : m_jj      : 1.080e-01
                         :    7 : m_lv      : 7.813e-02
                         : ----------------------------------------
                         : No variable ranking supplied by classifier: DNN_CPU
TH1.Print Name  = TrainingHistory_DNN_CPU_trainingError, Entries= 0, Total sum= 11.3096
TH1.Print Name  = TrainingHistory_DNN_CPU_valError, Entries= 0, Total sum= 11.6485
Factory                  : === Destroy and recreate all methods via weight files for testing ===
                         : 
                         : Reading weight file: ␛[0;36mdataset/weights/TMVA_Higgs_Classification_Likelihood.weights.xml␛[0m
                         : Reading weight file: ␛[0;36mdataset/weights/TMVA_Higgs_Classification_Fisher.weights.xml␛[0m
                         : Reading weight file: ␛[0;36mdataset/weights/TMVA_Higgs_Classification_BDT.weights.xml␛[0m
                         : Reading weight file: ␛[0;36mdataset/weights/TMVA_Higgs_Classification_DNN_CPU.weights.xml␛[0m
Factory                  : ␛[1mTest all methods␛[0m
Factory                  : Test method: Likelihood for Classification performance
                         : 
Likelihood               : [dataset] : Evaluation of Likelihood on testing sample (6000 events)
                         : Elapsed time for evaluation of 6000 events: 0.00564 sec       
Factory                  : Test method: Fisher for Classification performance
                         : 
Fisher                   : [dataset] : Evaluation of Fisher on testing sample (6000 events)
                         : Elapsed time for evaluation of 6000 events: 0.00164 sec       
                         : Dataset[dataset] : Evaluation of Fisher on testing sample
Factory                  : Test method: BDT for Classification performance
                         : 
BDT                      : [dataset] : Evaluation of BDT on testing sample (6000 events)
                         : Elapsed time for evaluation of 6000 events: 0.0207 sec       
Factory                  : Test method: DNN_CPU for Classification performance
                         : 
                         : Evaluate deep neural network on CPU using batches with size = 1000
                         : 
TFHandler_DNN_CPU        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     m_jj:   0.029995    0.98065   [    -3.1064     5.7307 ]
                         :    m_jjj:   0.030151    0.98464   [    -2.9982     5.7307 ]
                         :     m_lv:   0.011982     1.0066   [    -3.2274     5.7307 ]
                         :    m_jlv:  0.0049774     1.0015   [    -3.0644     5.7307 ]
                         :     m_bb:  -0.036143     1.0111   [    -5.7307     5.7307 ]
                         :    m_wbb: -0.0056377     1.0239   [    -3.0260     5.7307 ]
                         :   m_wwbb:  0.0023364     1.0091   [    -3.1905     5.7307 ]
                         : -----------------------------------------------------------
DNN_CPU                  : [dataset] : Evaluation of DNN_CPU on testing sample (6000 events)
                         : Elapsed time for evaluation of 6000 events: 0.0299 sec       
Factory                  : ␛[1mEvaluate all methods␛[0m
Factory                  : Evaluate classifier: Likelihood
                         : 
Likelihood               : [dataset] : Loop over test events and fill histograms with classifier response...
                         : 
TFHandler_Likelihood     : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     m_jj:     1.0368    0.66752   [    0.16310     16.132 ]
                         :    m_jjj:     1.0272    0.38070   [    0.41899     8.9401 ]
                         :     m_lv:     1.0522    0.17017   [    0.29757     3.2605 ]
                         :    m_jlv:     1.0135    0.40315   [    0.41660     5.8195 ]
                         :     m_bb:    0.96616    0.53867   [   0.080986     8.2551 ]
                         :    m_wbb:     1.0344    0.37776   [    0.42068     6.4013 ]
                         :   m_wwbb:    0.96122    0.31782   [    0.44118     4.5350 ]
                         : -----------------------------------------------------------
Factory                  : Evaluate classifier: Fisher
                         : 
Fisher                   : [dataset] : Loop over test events and fill histograms with classifier response...
                         : 
                         : Also filling probability and rarity histograms (on request)...
TFHandler_Fisher         : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     m_jj:     1.0368    0.66752   [    0.16310     16.132 ]
                         :    m_jjj:     1.0272    0.38070   [    0.41899     8.9401 ]
                         :     m_lv:     1.0522    0.17017   [    0.29757     3.2605 ]
                         :    m_jlv:     1.0135    0.40315   [    0.41660     5.8195 ]
                         :     m_bb:    0.96616    0.53867   [   0.080986     8.2551 ]
                         :    m_wbb:     1.0344    0.37776   [    0.42068     6.4013 ]
                         :   m_wwbb:    0.96122    0.31782   [    0.44118     4.5350 ]
                         : -----------------------------------------------------------
Factory                  : Evaluate classifier: BDT
                         : 
BDT                      : [dataset] : Loop over test events and fill histograms with classifier response...
                         : 
TFHandler_BDT            : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     m_jj:     1.0368    0.66752   [    0.16310     16.132 ]
                         :    m_jjj:     1.0272    0.38070   [    0.41899     8.9401 ]
                         :     m_lv:     1.0522    0.17017   [    0.29757     3.2605 ]
                         :    m_jlv:     1.0135    0.40315   [    0.41660     5.8195 ]
                         :     m_bb:    0.96616    0.53867   [   0.080986     8.2551 ]
                         :    m_wbb:     1.0344    0.37776   [    0.42068     6.4013 ]
                         :   m_wwbb:    0.96122    0.31782   [    0.44118     4.5350 ]
                         : -----------------------------------------------------------
Factory                  : Evaluate classifier: DNN_CPU
                         : 
DNN_CPU                  : [dataset] : Loop over test events and fill histograms with classifier response...
                         : 
                         : Evaluate deep neural network on CPU using batches with size = 1000
                         : 
TFHandler_DNN_CPU        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     m_jj:  0.0042139    0.99787   [    -3.2801     5.7307 ]
                         :    m_jjj:  0.0043508    0.99784   [    -3.2805     5.7307 ]
                         :     m_lv:  0.0051611     1.0008   [    -3.2813     5.7307 ]
                         :    m_jlv:  0.0044388    0.99830   [    -3.2803     5.7307 ]
                         :     m_bb:  0.0041864    0.99765   [    -3.2793     5.7307 ]
                         :    m_wbb:  0.0046426    0.99950   [    -3.2802     5.7307 ]
                         :   m_wwbb:  0.0044594    0.99873   [    -3.2802     5.7307 ]
                         : -----------------------------------------------------------
TFHandler_DNN_CPU        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     m_jj:   0.029995    0.98065   [    -3.1064     5.7307 ]
                         :    m_jjj:   0.030151    0.98464   [    -2.9982     5.7307 ]
                         :     m_lv:   0.011982     1.0066   [    -3.2274     5.7307 ]
                         :    m_jlv:  0.0049774     1.0015   [    -3.0644     5.7307 ]
                         :     m_bb:  -0.036143     1.0111   [    -5.7307     5.7307 ]
                         :    m_wbb: -0.0056377     1.0239   [    -3.0260     5.7307 ]
                         :   m_wwbb:  0.0023364     1.0091   [    -3.1905     5.7307 ]
                         : -----------------------------------------------------------
                         : 
                         : Evaluation results ranked by best signal efficiency and purity (area)
                         : -------------------------------------------------------------------------------------------------------------------
                         : DataSet       MVA                       
                         : Name:         Method:          ROC-integ
                         : dataset       DNN_CPU        : 0.768
                         : dataset       BDT            : 0.758
                         : dataset       Likelihood     : 0.699
                         : dataset       Fisher         : 0.654
                         : -------------------------------------------------------------------------------------------------------------------
                         : 
                         : Testing efficiency compared to training efficiency (overtraining check)
                         : -------------------------------------------------------------------------------------------------------------------
                         : DataSet              MVA              Signal efficiency: from test sample (from training sample) 
                         : Name:                Method:          @B=0.01             @B=0.10            @B=0.30   
                         : -------------------------------------------------------------------------------------------------------------------
                         : dataset              DNN_CPU        : 0.112 (0.144)       0.420 (0.449)      0.681 (0.706)
                         : dataset              BDT            : 0.080 (0.095)       0.394 (0.394)      0.674 (0.685)
                         : dataset              Likelihood     : 0.058 (0.076)       0.309 (0.338)      0.584 (0.590)
                         : dataset              Fisher         : 0.017 (0.014)       0.128 (0.141)      0.500 (0.529)
                         : -------------------------------------------------------------------------------------------------------------------
                         : 
Dataset:dataset          : Created tree 'TestTree' with 6000 events
                         : 
Dataset:dataset          : Created tree 'TrainTree' with 14000 events
                         : 
Factory                  : ␛[1mThank you for using TMVA!␛[0m
                         : ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m