Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
ApplicationClassificationKeras.py File Reference

Detailed Description

View in nbviewer Open in SWAN
This tutorial shows how to apply a trained model to new data.

from ROOT import TMVA, TFile, TString, gROOT
from array import array
from subprocess import call
from os.path import isfile
# Setup TMVA
reader = TMVA.Reader("Color:!Silent")
# Load data
data = TFile.Open(str(gROOT.GetTutorialDir()) + "/machine_learning/data/tmva_class_example.root")
signal = data.Get('TreeS')
background = data.Get('TreeB')
branches = {}
for branch in signal.GetListOfBranches():
branchName = branch.GetName()
branches[branchName] = array('f', [-999])
reader.AddVariable(branchName, branches[branchName])
signal.SetBranchAddress(branchName, branches[branchName])
background.SetBranchAddress(branchName, branches[branchName])
# Book methods
reader.BookMVA('PyKeras', TString('dataset/weights/TMVAClassification_PyKeras.weights.xml'))
# Print some example classifications
print('Some signal example classifications:')
for i in range(20):
print(reader.EvaluateMVA('PyKeras'))
print('')
print('Some background example classifications:')
for i in range(20):
print(reader.EvaluateMVA('PyKeras'))
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
The Reader class serves to use the MVAs in a specific analysis context.
Definition Reader.h:64
Basic string class.
Definition TString.h:139
Date
2017
Author
TMVA Team

Definition in file ApplicationClassificationKeras.py.