Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.4 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0157 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 19.4002
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.84597 0.827278 0.105072 0.0106077 12703.1 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.663573 0.767256 0.105322 0.0103307 12632.7 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.589107 0.734756 0.107069 0.0107361 12456.8 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.520903 0.689353 0.105821 0.0108536 12635.9 0
: 5 | 0.450199 0.772817 0.106465 0.0102019 12465.9 1
: 6 | 0.402605 0.728399 0.105005 0.00991283 12619.3 2
: 7 Minimum Test error found - save the configuration
: 7 | 0.342764 0.681637 0.106386 0.0127148 12810.8 0
: 8 | 0.309357 0.757914 0.111144 0.0108807 11968.5 1
: 9 | 0.26754 0.722696 0.111711 0.0101496 11815.5 2
: 10 | 0.234189 0.76858 0.104524 0.00996626 12690.6 3
:
: Elapsed time for training with 1600 events: 1.09 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0539 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 124.214
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 5.28445 2.42038 0.8366 0.0691644 1563.65 0
: 2 Minimum Test error found - save the configuration
: 2 | 1.3059 1.11134 0.83204 0.0705583 1575.87 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.828102 0.752373 0.782864 0.0671033 1676.54 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.691369 0.666209 0.78488 0.0685542 1675.22 0
: 5 | 0.670779 0.672483 0.811451 0.0679282 1613.94 1
: 6 Minimum Test error found - save the configuration
: 6 | 0.646765 0.644873 0.865826 0.075678 1518.7 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.670334 0.63097 0.79748 0.0700551 1649.66 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.636363 0.621914 0.785809 0.0705638 1677.75 0
: 9 | 0.621503 0.624809 0.764442 0.0671082 1720.84 1
: 10 Minimum Test error found - save the configuration
: 10 | 0.620056 0.600398 0.749559 0.0672182 1758.65 0
:
: Elapsed time for training with 1600 events: 8.09 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.349 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 9.673e-03
: 2 : vars : 8.599e-03
: 3 : vars : 8.589e-03
: 4 : vars : 8.214e-03
: 5 : vars : 8.136e-03
: 6 : vars : 8.132e-03
: 7 : vars : 7.609e-03
: 8 : vars : 7.484e-03
: 9 : vars : 7.468e-03
: 10 : vars : 7.381e-03
: 11 : vars : 7.348e-03
: 12 : vars : 7.322e-03
: 13 : vars : 7.318e-03
: 14 : vars : 7.317e-03
: 15 : vars : 6.657e-03
: 16 : vars : 6.627e-03
: 17 : vars : 6.599e-03
: 18 : vars : 6.594e-03
: 19 : vars : 6.484e-03
: 20 : vars : 6.479e-03
: 21 : vars : 6.477e-03
: 22 : vars : 6.456e-03
: 23 : vars : 6.452e-03
: 24 : vars : 6.446e-03
: 25 : vars : 6.388e-03
: 26 : vars : 6.190e-03
: 27 : vars : 6.151e-03
: 28 : vars : 6.141e-03
: 29 : vars : 6.064e-03
: 30 : vars : 6.043e-03
: 31 : vars : 5.980e-03
: 32 : vars : 5.951e-03
: 33 : vars : 5.934e-03
: 34 : vars : 5.927e-03
: 35 : vars : 5.867e-03
: 36 : vars : 5.839e-03
: 37 : vars : 5.822e-03
: 38 : vars : 5.779e-03
: 39 : vars : 5.775e-03
: 40 : vars : 5.753e-03
: 41 : vars : 5.728e-03
: 42 : vars : 5.712e-03
: 43 : vars : 5.681e-03
: 44 : vars : 5.641e-03
: 45 : vars : 5.640e-03
: 46 : vars : 5.622e-03
: 47 : vars : 5.618e-03
: 48 : vars : 5.590e-03
: 49 : vars : 5.489e-03
: 50 : vars : 5.383e-03
: 51 : vars : 5.377e-03
: 52 : vars : 5.374e-03
: 53 : vars : 5.352e-03
: 54 : vars : 5.312e-03
: 55 : vars : 5.308e-03
: 56 : vars : 5.295e-03
: 57 : vars : 5.272e-03
: 58 : vars : 5.268e-03
: 59 : vars : 5.223e-03
: 60 : vars : 5.210e-03
: 61 : vars : 5.182e-03
: 62 : vars : 5.156e-03
: 63 : vars : 5.085e-03
: 64 : vars : 5.084e-03
: 65 : vars : 5.050e-03
: 66 : vars : 5.034e-03
: 67 : vars : 5.022e-03
: 68 : vars : 5.010e-03
: 69 : vars : 4.988e-03
: 70 : vars : 4.946e-03
: 71 : vars : 4.929e-03
: 72 : vars : 4.922e-03
: 73 : vars : 4.914e-03
: 74 : vars : 4.897e-03
: 75 : vars : 4.881e-03
: 76 : vars : 4.865e-03
: 77 : vars : 4.859e-03
: 78 : vars : 4.855e-03
: 79 : vars : 4.850e-03
: 80 : vars : 4.753e-03
: 81 : vars : 4.734e-03
: 82 : vars : 4.693e-03
: 83 : vars : 4.690e-03
: 84 : vars : 4.686e-03
: 85 : vars : 4.673e-03
: 86 : vars : 4.667e-03
: 87 : vars : 4.658e-03
: 88 : vars : 4.619e-03
: 89 : vars : 4.618e-03
: 90 : vars : 4.612e-03
: 91 : vars : 4.590e-03
: 92 : vars : 4.586e-03
: 93 : vars : 4.569e-03
: 94 : vars : 4.569e-03
: 95 : vars : 4.541e-03
: 96 : vars : 4.534e-03
: 97 : vars : 4.531e-03
: 98 : vars : 4.504e-03
: 99 : vars : 4.504e-03
: 100 : vars : 4.495e-03
: 101 : vars : 4.477e-03
: 102 : vars : 4.411e-03
: 103 : vars : 4.398e-03
: 104 : vars : 4.328e-03
: 105 : vars : 4.322e-03
: 106 : vars : 4.314e-03
: 107 : vars : 4.297e-03
: 108 : vars : 4.266e-03
: 109 : vars : 4.209e-03
: 110 : vars : 4.204e-03
: 111 : vars : 4.173e-03
: 112 : vars : 4.165e-03
: 113 : vars : 4.150e-03
: 114 : vars : 4.139e-03
: 115 : vars : 4.137e-03
: 116 : vars : 4.127e-03
: 117 : vars : 4.106e-03
: 118 : vars : 4.106e-03
: 119 : vars : 4.018e-03
: 120 : vars : 4.006e-03
: 121 : vars : 3.948e-03
: 122 : vars : 3.914e-03
: 123 : vars : 3.912e-03
: 124 : vars : 3.911e-03
: 125 : vars : 3.907e-03
: 126 : vars : 3.897e-03
: 127 : vars : 3.893e-03
: 128 : vars : 3.815e-03
: 129 : vars : 3.815e-03
: 130 : vars : 3.801e-03
: 131 : vars : 3.784e-03
: 132 : vars : 3.762e-03
: 133 : vars : 3.760e-03
: 134 : vars : 3.751e-03
: 135 : vars : 3.745e-03
: 136 : vars : 3.744e-03
: 137 : vars : 3.717e-03
: 138 : vars : 3.708e-03
: 139 : vars : 3.679e-03
: 140 : vars : 3.672e-03
: 141 : vars : 3.653e-03
: 142 : vars : 3.624e-03
: 143 : vars : 3.618e-03
: 144 : vars : 3.614e-03
: 145 : vars : 3.607e-03
: 146 : vars : 3.597e-03
: 147 : vars : 3.596e-03
: 148 : vars : 3.586e-03
: 149 : vars : 3.570e-03
: 150 : vars : 3.554e-03
: 151 : vars : 3.553e-03
: 152 : vars : 3.547e-03
: 153 : vars : 3.494e-03
: 154 : vars : 3.485e-03
: 155 : vars : 3.482e-03
: 156 : vars : 3.474e-03
: 157 : vars : 3.394e-03
: 158 : vars : 3.358e-03
: 159 : vars : 3.357e-03
: 160 : vars : 3.351e-03
: 161 : vars : 3.326e-03
: 162 : vars : 3.313e-03
: 163 : vars : 3.278e-03
: 164 : vars : 3.260e-03
: 165 : vars : 3.259e-03
: 166 : vars : 3.257e-03
: 167 : vars : 3.255e-03
: 168 : vars : 3.224e-03
: 169 : vars : 3.221e-03
: 170 : vars : 3.202e-03
: 171 : vars : 3.195e-03
: 172 : vars : 3.188e-03
: 173 : vars : 3.184e-03
: 174 : vars : 3.086e-03
: 175 : vars : 3.085e-03
: 176 : vars : 3.073e-03
: 177 : vars : 3.063e-03
: 178 : vars : 3.059e-03
: 179 : vars : 3.040e-03
: 180 : vars : 2.992e-03
: 181 : vars : 2.979e-03
: 182 : vars : 2.968e-03
: 183 : vars : 2.954e-03
: 184 : vars : 2.943e-03
: 185 : vars : 2.895e-03
: 186 : vars : 2.886e-03
: 187 : vars : 2.881e-03
: 188 : vars : 2.866e-03
: 189 : vars : 2.807e-03
: 190 : vars : 2.801e-03
: 191 : vars : 2.784e-03
: 192 : vars : 2.747e-03
: 193 : vars : 2.718e-03
: 194 : vars : 2.691e-03
: 195 : vars : 2.658e-03
: 196 : vars : 2.628e-03
: 197 : vars : 2.622e-03
: 198 : vars : 2.586e-03
: 199 : vars : 2.545e-03
: 200 : vars : 2.518e-03
: 201 : vars : 2.515e-03
: 202 : vars : 2.508e-03
: 203 : vars : 2.438e-03
: 204 : vars : 2.436e-03
: 205 : vars : 2.404e-03
: 206 : vars : 2.403e-03
: 207 : vars : 2.396e-03
: 208 : vars : 2.369e-03
: 209 : vars : 2.337e-03
: 210 : vars : 2.322e-03
: 211 : vars : 2.285e-03
: 212 : vars : 2.237e-03
: 213 : vars : 2.221e-03
: 214 : vars : 2.166e-03
: 215 : vars : 2.129e-03
: 216 : vars : 2.126e-03
: 217 : vars : 2.126e-03
: 218 : vars : 2.101e-03
: 219 : vars : 2.096e-03
: 220 : vars : 2.056e-03
: 221 : vars : 2.034e-03
: 222 : vars : 2.013e-03
: 223 : vars : 1.961e-03
: 224 : vars : 1.957e-03
: 225 : vars : 1.871e-03
: 226 : vars : 1.758e-03
: 227 : vars : 1.739e-03
: 228 : vars : 1.690e-03
: 229 : vars : 1.611e-03
: 230 : vars : 1.582e-03
: 231 : vars : 1.581e-03
: 232 : vars : 1.545e-03
: 233 : vars : 1.371e-03
: 234 : vars : 1.354e-03
: 235 : vars : 1.323e-03
: 236 : vars : 1.298e-03
: 237 : vars : 1.167e-03
: 238 : vars : 1.114e-03
: 239 : vars : 1.094e-03
: 240 : vars : 8.682e-04
: 241 : vars : 8.668e-04
: 242 : vars : 5.739e-04
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.62621
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.45069
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 11.9756
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 8.74574
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00415 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0127 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0971 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset TMVA_CNN_CPU : 0.761
: dataset BDT : 0.758
: dataset TMVA_DNN_CPU : 0.635
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset TMVA_CNN_CPU : 0.105 (0.135) 0.425 (0.475) 0.678 (0.747)
: dataset BDT : 0.065 (0.380) 0.325 (0.686) 0.682 (0.916)
: dataset TMVA_DNN_CPU : 0.070 (0.105) 0.271 (0.520) 0.498 (0.779)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m