Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
TMVA_SOFIE_GNN_Parser.py File Reference
  class  TMVA_SOFIE_GNN_Parser.MLPGraphNetwork  

Functions

 GLOBAL_FEATURE_SIZE=1)    GLOBAL_FEATURE_SIZE=1)    TMVA_SOFIE_GNN_Parser.make_mlp_model ()    TMVA_SOFIE_GNN_Parser.printMemory (s="")      LATENT_SIZE)   list TMVA_SOFIE_GNN_Parser.dataset = []    LATENT_SIZE)    filename = "decoder")    edge_size)   TMVA_SOFIE_GNN_Parser.edge_size = 4    filename = "encoder")    TMVA_SOFIE_GNN_Parser.end = time.time()    EncodeProcessDecode()    TMVA_SOFIE_GNN_Parser.fileOut = ROOT.TFile.Open("graph_data.root","RECREATE")   TMVA_SOFIE_GNN_Parser.firstEvent = True    global_size)   TMVA_SOFIE_GNN_Parser.global_size = 1    global_size)    global_size)    output",40,1,0)    output",40,1,0)    output",40,1,0)    CoreGraphData])    GraphData])   TMVA_SOFIE_GNN_Parser.LATENT_SIZE = 100    node_size)   TMVA_SOFIE_GNN_Parser.node_size = 4    graphData['edges'].shape[0]   TMVA_SOFIE_GNN_Parser.NUM_LAYERS = 4   TMVA_SOFIE_GNN_Parser.num_max_edges = 300   TMVA_SOFIE_GNN_Parser.num_max_nodes = 100   TMVA_SOFIE_GNN_Parser.numevts = 100    TMVA_SOFIE_GNN_Parser.outgnn = ROOT.std.vector['float'](3)    output_gnn[-1].edges.numpy()    output_gnn[-1].globals.numpy()    processing_steps)    processing_steps)    output_gnn[-1].nodes.numpy()    filename = "output_transform")   TMVA_SOFIE_GNN_Parser.processing_steps = 5    num_max_edges)    size    size    num_max_edges)    TMVA_SOFIE_GNN_Parser.start = time.time()    graphData])    size)))    data")   TMVA_SOFIE_GNN_Parser.verbose = False  

Detailed Description

View in nbviewer Open in SWAN

Tutorial showing how to parse a GNN from GraphNet and make a SOFIE model The tutorial also generate some data which can serve as input for the tutorial TMVA_SOFIE_GNN_Application.C

Definition in file TMVA_SOFIE_GNN_Parser.py.