|
class | TMVA_SOFIE_GNN_Parser.MLPGraphNetwork |
|
|
| GLOBAL_FEATURE_SIZE=1) |
|
| GLOBAL_FEATURE_SIZE=1) |
|
| TMVA_SOFIE_GNN_Parser.make_mlp_model () |
|
| TMVA_SOFIE_GNN_Parser.printMemory (s="") |
|
|
| LATENT_SIZE) |
|
list | TMVA_SOFIE_GNN_Parser.dataset = [] |
|
| LATENT_SIZE) |
|
| filename = "decoder") |
|
| edge_size) |
|
TMVA_SOFIE_GNN_Parser.edge_size = 4 |
|
| filename = "encoder") |
|
| TMVA_SOFIE_GNN_Parser.end = time.time() |
|
| EncodeProcessDecode() |
|
| TMVA_SOFIE_GNN_Parser.fileOut = ROOT.TFile.Open("graph_data.root","RECREATE") |
|
TMVA_SOFIE_GNN_Parser.firstEvent = True |
|
| global_size) |
|
TMVA_SOFIE_GNN_Parser.global_size = 1 |
|
| global_size) |
|
| global_size) |
|
| output",40,1,0) |
|
| output",40,1,0) |
|
| output",40,1,0) |
|
| CoreGraphData]) |
|
| GraphData]) |
|
TMVA_SOFIE_GNN_Parser.LATENT_SIZE = 100 |
|
| node_size) |
|
TMVA_SOFIE_GNN_Parser.node_size = 4 |
|
| graphData['edges'].shape[0] |
|
TMVA_SOFIE_GNN_Parser.NUM_LAYERS = 4 |
|
TMVA_SOFIE_GNN_Parser.num_max_edges = 300 |
|
TMVA_SOFIE_GNN_Parser.num_max_nodes = 100 |
|
TMVA_SOFIE_GNN_Parser.numevts = 100 |
|
| TMVA_SOFIE_GNN_Parser.outgnn = ROOT.std.vector['float'](3) |
|
| output_gnn[-1].edges.numpy() |
|
| output_gnn[-1].globals.numpy() |
|
| processing_steps) |
|
| processing_steps) |
|
| output_gnn[-1].nodes.numpy() |
|
| filename = "output_transform") |
|
TMVA_SOFIE_GNN_Parser.processing_steps = 5 |
|
| num_max_edges) |
|
| size |
|
| size |
|
| num_max_edges) |
|
| TMVA_SOFIE_GNN_Parser.start = time.time() |
|
| graphData]) |
|
| size))) |
|
| data") |
|
TMVA_SOFIE_GNN_Parser.verbose = False |
|
Tutorial showing how to parse a GNN from GraphNet and make a SOFIE model The tutorial also generate some data which can serve as input for the tutorial TMVA_SOFIE_GNN_Application.C
Definition in file TMVA_SOFIE_GNN_Parser.py.